[洛谷P3628] [APIO2010]特别行动队
洛谷题目链接:[APIO2010]特别行动队
题目描述
你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场。出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 \((i, i + 1, ..., i + k)\) 的序列。 编号为 \(i\) 的士兵的初始战斗力为 \(x_i\) ,一支特别行动队的初始战斗力 \(x\) 为队内 士兵初始战斗力之和,即 \(x = x_i + x_{i+1} + ... + x_{i+k}\) 。
通过长期的观察,你总结出一支特别行动队的初始战斗力 \(x\) 将按如下经验公 式修正为 \(x':x'= ax^2+bx+c\),其中 a, b, c 是已知的系数(a < 0)。 作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后 战斗力之和最大。试求出这个最大和。
例如,你有 4 名士兵,\(x_1 = 2, x_2 = 2, x_3 = 3, x_4 = 4\).经验公式中的参数为 a = –1, b = 10, c = –20。此时,最佳方案是将士兵组成 3 个特别行动队:第一队包含士兵 1 和士兵 2,第二队包含士兵 3,第三队包含士兵 4。特别行动队的初始战斗力分 别为 4, 3, 4,修正后的战斗力分别为 4, 1, 4。修正后的战斗力和为 9,没有其它 方案能使修正后的战斗力和更大。
输入输出格式
输入格式:
输入由三行组成。第一行包含一个整数 n,表示士兵的总数。第二行包含三 个整数 a, b, c,经验公式中各项的系数。第三行包含 n 个用空格分隔的整数 \(x_1, x_2, …, x_n\) ,分别表示编号为 \(1, 2, …, n\) 的士兵的初始战斗力。
输出格式:
输出一个整数,表示所有特别行动队修正后战斗力之和的最大值。
输入输出样例
输入样例#1:
4
-1 10 -20
2 2 3 4
输出样例#1:
9
说明
20%的数据中,n ≤ 1000;
50%的数据中,n ≤ 10,000;
100%的数据中,1 ≤ n ≤ 1,000,000,–5 ≤ a ≤ –1,|b| ≤ 10,000,000,|c| ≤ 10,000,000,1 ≤ xi ≤ 100
一句话题意: 将\(n\)个士兵分成若干组,设他们的战斗力之和为\(x\),则新得到的战斗力为\(x'\),\(x'=a*x^2+b*x+c\),现在要求出一种方法使得总战斗力之和最大.
题解: DP方程应该很容易想到,设\(f[i]\)表示到第\(i\)个人所能得到的最大的战斗力.显然有$$f[i]=max(f[i], f[j]+a(pre[i]-pre[j])^2+b(pre[i]-pre[j])+c$$
其中\((0\leq j<i)\),\(pre[i]\)代表1~\(i\)个人的战斗力的前缀和.
那么显然如果直接用DP来做的话,时间复杂度是\(O(n^2)\)的.那么我们就需要想一下优化.接下来我们需要对这个DP方程进行化简,假设\(j\)状态为转移到\(i\)状态的最优解,则有:
\]
\]
移项成斜率式,则有$$22pre[i]pre[j]+f[i]-apre[i]2-b*pre[i]-c=a*pre[j]2-b*pre[j]+f[j]$$
我们把\(pre[j]\)看做直线的\(x\) , 将\(2*a*pre[i]*pre[j]\)看做直线的斜率,\(a*pre[j]^2-b*pre[j]+f[j]\)看做直线的\(y\),将\(f[i]-b*pre[i]-a*pre[i]^2-c\)看做斜率的截距,既然题目维护的是最大值,那么就要维护一个上凸包(当然套路是一样的),之后的就直接套路搞就可以了.
#include<bits/stdc++.h>
using namespace std;
const int N=1000000+5;
typedef long long lol;
lol n, a, b, c, w[N], pre[N], h = 0, t = 0, q[N], f[N];
lol gi(){
lol ans = 0, f = 1; char i = getchar();
while(i<'0'||i>'9'){if(i=='-')f=-1;i=getchar();}
while(i>='0'&&i<='9'){ans=ans*10+i-'0';i=getchar();}
return ans * f;
}
lol calc(lol x){return a*x*x+b*x+c;}
lol X(lol i){return pre[i];}
lol Y(lol i){return f[i]+a*pre[i]*pre[i]-b*pre[i];}
double slope(lol i, lol j){return (double) (Y(i)-Y(j))/(X(i)-X(j));}
int main(){
n = gi(), a = gi(), b = gi(), c = gi();
for(int i=1;i<=n;i++) w[i] = gi(), pre[i] = pre[i-1]+w[i];
for(int i=1;i<=n;i++){
while(h < t && slope(q[h], q[h+1]) > (double) 2.0*a*pre[i]) h++;
f[i] = f[q[h]]+calc(pre[i]-pre[q[h]]);
while(h < t && slope(q[t], q[t-1]) < slope(q[t], i)) t--;
q[++t] = i;
}
printf("%lld\n", f[n]);
return 0;
}
[洛谷P3628] [APIO2010]特别行动队的更多相关文章
- 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...
- 洛谷P3628 [APIO2010]特别行动队(斜率优化)
传送门 先写出转移方程$$dp[i]=max\{dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c\}$$ 假设$j$比$k$更优,则有$$dp[j]+a*(s ...
- 洛谷P3628 [APIO2010]特别行动队 斜率优化
裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using nam ...
- 洛谷 P3628 [APIO2010]特别行动队
题意简述 将n个士兵分为若干组,每组连续,编号为i的士兵战斗力为xi 若i~j士兵为一组,该组初始战斗力为\( s = \sum\limits_{k = i}^{j}xk \),实际战斗力\(a * ...
- 洛谷3628 APIO2010特别行动队(斜率优化)
考虑最普通的\(dp\) \[dp[i]=max(dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c \] qwq 由于演算纸扔掉了 qwq 所以直接给出最后的 ...
- P3628 [APIO2010]特别行动队(斜率优化dp)
P3628 [APIO2010]特别行动队 设$s[i]$为战斗力前缀和 显然我们可以列出方程 $f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$ $f[i]= ...
- [luogu P3628] [APIO2010]特别行动队
[luogu P3628] [APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特 ...
- P3628 [APIO2010]特别行动队
\(\color{#0066ff}{ 题目描述 }\) 你有一支由 \(n\) 名预备役士兵组成的部队,士兵从 \(1\) 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑 ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
随机推荐
- SGU 438 The Glorious Karlutka River =)(最大流)
Description A group of Mtourists are walking along the Karlutka river. They want to cross the river, ...
- Java学习个人备忘录之构造函数&this
构造函数 概念:构建创造对象时调用的函数. 作用:可以给对象进行初始化,创建对象都必须要通过构造函数初始化. 一个类中如果没有定义过构造函数,那么该类中会有一个默认的空参数构造函数.如果在类中定义了指 ...
- Spark GraphX 2
顶点:VertexRDD 边:EdgeRDD.Edge.EdgeDirection Triplet:EdgeTriplet 存储:PartitionStrategy 通常的存储方式有两种: ...
- Swift-assert使用时机
什么时候使用断言呢? 包含下面的情况时使用断言: 1.整型下标索引作为值传给自定义索引实现的参数时,但下标索引值不能太低也不能太高时,使用断言 2.传值给函数但如果这个传过来的值无效时,函数就不能完成 ...
- 【alpha】Scrum站立会议第2次....10.17
小组名称:nice! 小组成员:李权 于淼 杨柳 刘芳芳 项目内容:约跑app 1.任务进度 成员 已完成 今日完成 李权 数据库设计 消息发送代码实现 于淼 注册.登录界面,以及登录界面后台代码.发 ...
- CentOS 7 开放防火墙端口
我:最近在使 CentOS 7时发现在本地不能访问linux上8080端口,以上是我的操作,修改后访问成功 CentOS 7 开放防火墙端口 命令 最近公司新的server要求用CentOS7, 发现 ...
- xpath教程一---简单的标签搜索
工具 Python3版本 lxml库[优点是解析快] HTML代码块[从网络中获取或者自己杜撰一个] requests[推荐安装,从网页上获取网页代码练手,再好不过了] 讲解 网页代码都是成对的标签, ...
- 代码编写规范Asp.Net(c#)
1 目的 为了统一公司软件开发的设计过程中关于代码编写时的编写规范和具体开发工作时的编程规范,保证代码的一致性,便于交流和维护,特制定此规范. 2 范围 本规范适用于开发组 ...
- jstack分析线程死锁
一.介绍 jstack是java虚拟机自带的一种堆栈跟踪工具.jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息,如果是在64位机器上,需要指定选项&qu ...
- 第49天:封装自己的scrollTop
一.scroll家族 offset 自己的偏移scroll滚动的 scrollTop和scrollLeftscrollTop 被卷去的头部当滑动滚轮浏览网页的时候,网页隐藏在屏幕上方的距离二.页面滚动 ...