bzoj 2131 免费的馅饼
Written with StackEdit.
Description
Input
第一行是用空格隔开的二个正整数,分别给出了舞台的宽度\(W\)(\(1\)到\(10^8\)之间)和馅饼的个数\(n\)(\(1\)到\(10^5\)).接下来\(n\)行,每一行给出了一块馅饼的信息。由三个正整数组成,分别表示了每个馅饼落到舞台上的时刻t[i](\(1\)到\(10^8\)秒),掉到舞台上的格子的编号\(p[i]\)(\(1\)和\(w\)之间),以及分值\(v[i]\)(\(1\)到\(1000\)之间)。游戏开始时刻为\(0\)。输入文件中同一行相邻两项之间用一个空格隔开。输入数据中可能存在两个馅饼的\(t[i]\)和\(p[i]\)都一样。
Output
一个数,表示游戏者获得的最大总得分。
Sample Input
3 4
1 2 3
5 2 3
6 3 4
1 1 5
Sample Output
12
HINT
对于\(100\%\)的数据,\(1<=w,t[i]<=10^8,1<=n<=100000.\)
Solution
- 比较明显的朴素\(dp\)思路是,设\(f[i]\)表示最后拿的一个饼是第\(i\)个的最大收益.
- 显然有\(f[i]=max\){\(f[j]|j<i,|p[i]-p[j]|\leq 2(t[i]-t[j])\)}\(+v[i]\).
- 这样是\(O(n^2)\)的,需要优化.
- 我们将限制条件中的绝对值式子拆开,得到两个不等式.
- \(2t[i]+p[i]\geq 2t[j]+p[j].\)
- \(2t[i]-p[i]\geq 2t[j]-p[j].\)
- 那么我们将\(2t+p,2t-p\)视作两维,先按照一维排序,再对另一维离散化,利用树状数组优化转移.
- \(j<i\)的条件此时可以直接忽略掉,因为\(f[i]\)现在表示某一维的值对应的最优解,不再与时间联系.
#include<bits/stdc++.h>
#define lowbit(x) x&(-x)
const int inf=1e9;
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=1e5+10;
struct pies{
int t,p,v;//落地时间,落地位置,价值
int a,b;//b存储离散化后的值
// a = 2*t + p
// b = 2*t - p
bool operator < (const pies &rhs) const {
return a<rhs.a;
}
}x[MAXN];
struct unipies{
int b,id;
bool operator < (const unipies &rhs) const {
return b<rhs.b;
}
}y[MAXN];
int n,w;
int unin=0;
int f[MAXN];
//f[i]=f[j]+v[i], j<i && abs(p[i]-p[j])<=2*(t[i]-t[j])
void Unique()
{
sort(y+1,y+1+n);
y[0].b=-inf;
for(int i=1;i<=n;++i)
{
if(y[i].b!=y[i-1].b)
++unin;
x[y[i].id].b=unin;
}
}
int bit[MAXN];
inline void upd(int x,int c)
{
for(;x<=unin;x+=lowbit(x))
bit[x]=max(bit[x],c);
}
inline int query(int x)
{
int res=-inf;
for(;x;x-=lowbit(x))
res=max(res,bit[x]);
return res;
}
int main()
{
w=read(),n=read();
for(int i=1;i<=n;++i)
{
x[i].t=read();
x[i].p=read();
x[i].v=read();
x[i].a=x[i].t*2+x[i].p;
y[i].b=x[i].t*2-x[i].p;
y[i].id=i;
}
Unique();
sort(x+1,x+1+n);
for(int i=1;i<=n;++i)
{
int newv=query(x[i].b)+x[i].v;
upd(x[i].b,newv);
}
int ans=query(unin);
printf("%d\n",ans);
return 0;
}
参考了dalao的blog.
bzoj 2131 免费的馅饼的更多相关文章
- bzoj 2131 : 免费的馅饼 (树状数组优化dp)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2131 思路: 题目给出了每个馅饼的下落时间t,和位置p,以及价值v,我们可以得到如下状态 ...
- bzoj 2131: 免费的馅饼【dp+树状数组】
简单粗暴的dp应该是把馅饼按时间排序然后设f[i]为i接到馅饼能获得的最大代价,转移是f[i]=max(f[j])+v[i],t[j]<=t[i],2t[i]-2t[j]>=abs(p[i ...
- 【BZOJ】2131: 免费的馅饼
2131: 免费的馅饼 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 508 Solved: 310[Submit][Status][Discuss ...
- [bzoj2131]免费的馅饼 树状数组优化dp
2131: 免费的馅饼 Time Limit: 10 Sec Memory Limit: 259 MB[Submit][Status][Discuss] Description Input 第一行是 ...
- [bzoj2131]免费的馅饼_树状数组
免费的馅饼 bzoj-2131 题目大意: 注释:$1\le n \le 10^5$,$1\le w \le 10^8$. 想法:首先,想到dp 状态:dp[i][j]表示i分钟在位置j的最大收益 优 ...
- 免费的馅饼 HYSBZ - 2131 (树状数组维护二维偏序)
题目链接:https://cn.vjudge.net/problem/HYSBZ-2131 题目大意:中文题目 具体思路:对于任意的两个位置,posA和posB,我们可以如下推导. |posA-pos ...
- bzoj2131 免费的馅饼——树状数组优化dp
中文题目,问你最后能最多够得到多少价值的馅饼.因为宽度10^8且个数为10^5.所以不可以用dp[x][y]表示某时间某地点的最大权值. 假设你在x点处接到饼后想去y点接饼.那么需要满足的条件是t[y ...
- BZOJ2131 免费的馅饼【线段树优化DP】
Input 第一行是用空格隔开的二个正整数,分别给出了舞台的宽度W(1到10^8之间)和馅饼的个数n(1到10^5). 接下来n行,每一行给出了一块馅饼的信息.由三个正整数组成,分别表示了每个馅饼落到 ...
- BZOJ 2131 [scoi2010] 传送带
@(BZOJ)[三分法] Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段. 两条传送带分别为线段AB和线段CD. lxhgww在AB上的移动速度为P,在CD上的移 ...
随机推荐
- json字符串转化为json对象and 对象转化为 json字符串
第一种方法: var data =evel('('+jsonstr+')') 解析: 这种方法是常用的方法, 即动态执行 javascript代码 在堆中存放数据. 存在安全问题. 第二种方法: ...
- Http请求的TCP连接
我们一直认为,HTTP连接分为长连接和短连接,而我们现在常用的都是HTTP1.1,因此我们用的都是长连接. 这句话其实只对了一半,我们现如今的HTTP协议,大部分都是1.1的,因此我们平时用的基本上都 ...
- 20162326 《Java程序设计》第3周学习总结
20162326 <Java程序设计>第3周学习总结 教材学习内容总结 这周我通过课堂学习了VIM的列编辑crtl+v,shift+i shift+a·分别是左侧插入和右侧插入.还学习了使 ...
- 【转】React Native中ES5 ES6写法对照
很多React Native的初学者都被ES6的问题迷惑:各路大神都建议我们直接学习ES6的语法(class Foo extends React.Component),然而网上搜到的很多教程和例子都是 ...
- [Android]自定义控件LoadMoreRecyclerView
RecyclerView是加强版的ListView,用于在有限的窗口中展示大量的数据,而LoadMoreRecyclerView则是为RecyclerView增加了加载更多的功能,先来看效果: 三种加 ...
- 初识 Zookeeper
云计算越来越流行的今天,单一机器处理能力已经不能满足我们的需求,不得不采用大量的服务集群.服务集群对外提供服务的过程中,有很多的配置需要随时更新,服务间需要协调工作,这些信息如何推送到各个节点?并且保 ...
- Registering Components-->Autofac registration(include constructor injection)
https://autofaccn.readthedocs.io/en/latest/register/registration.html Registration Concepts (有4种方式来 ...
- JS Object To C# ASP.Net ModelBind
之前做项目的时候发现,Jquery自带的Form 序列化函数.与asp.net 里边的Modelbinding格式不匹配,所以写了一个可以把前端的Object对象序列化成ModelBinding认识的 ...
- 内存中加载DLL DELPHI版
//从内存中加载DLL DELPHI版 unit MemLibrary; interface uses Windows; function memLoadLibrary(pLib: Pointer): ...
- hermite插值
Hermite 插值就是要求插值函数不仅经过所给节点,而且要保证在该点的导数也相等.<备注:虽然还不理解这句话,但是还是先放这里!> 所谓样条曲线(Spline Curves)是指给定一组 ...