LOJ2823 「BalticOI 2014 Day 1」三个朋友
题意
给定一个字符串 S,先将字符串 S 复制一次(变成双倍快乐),得到字符串 T,然后在 T 中插入一个字符,得到字符串 U。
给出字符串 U,重新构造出字符串 S。
所有字符串只包含大写英文字母。
分析
参照jklover的题解。
此题使用hash十分简单,直接枚举每个前缀,与长度相等的后缀比较即可.
时间复杂度:线性。
代码
哈希的计算方法很妙。
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>il T read(rg T&x)
{
return x=read<T>();
}
typedef unsigned long long ull;
co int N=2e6+1;
co ull Base=233;
ull Hash[N],Pow[N];
int n;
char s[N];
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n);
scanf("%s",s+1);
if(n%2==0)
{
puts("NOT POSSIBLE");
return 0;
}
Pow[0]=1;
for(int i=1;i<=n;++i)
Pow[i]=Pow[i-1]*Base;
Hash[0]=0;
for(int i=1;i<=n;++i)
Hash[i]=Hash[i-1]*Base+s[i];
int cnt=0,cutpos;
ull res=0;
for(int i=1;i<=n;++i)
{
ull hashpre,hashsuf;
if(i<=n/2)
hashpre=Hash[n/2+1]+(Hash[i-1]-Hash[i])*Pow[n/2-i+1];
else
hashpre=Hash[n/2];
if(i<=n/2+1)
hashsuf=Hash[n]-Hash[n/2+1]*Pow[n/2];
else
hashsuf=(Hash[i-1]-Hash[n/2]*Pow[i-n/2-1])*Pow[n-i]+Hash[n]-Hash[i]*Pow[n-i];
if(hashpre==hashsuf)
{
++cnt;
if(res&&hashpre!=res)
{
puts("NOT UNIQUE");
return 0;
}
res=hashpre;
cutpos=i;
}
}
if(!cnt)
puts("NOT POSSIBLE");
else
{
if(cutpos>n/2)
for(int i=1;i<=n/2;++i)
putchar(s[i]);
else
for(int i=1;i<=n/2+1;++i)
if(i!=cutpos)
putchar(s[i]);
puts("");
}
return 0;
}
LOJ2823 「BalticOI 2014 Day 1」三个朋友的更多相关文章
- LOJ#2632. 「BalticOI 2011 Day1」打开灯泡 Switch the Lamp On
题目描述 译自 BalticOI 2011 Day1 T3「Switch the Lamp On」有一种正方形的电路元件,在它的两组相对顶点中,有一组会用导线连接起来,另一组则不会.有 N×M 个这样 ...
- 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)
[题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...
- 「JOI 2014 Final」飞天鼠
「JOI 2014 Final」飞天鼠 显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0. 到达一个点有两种情况:到达高度为0和不为0. 对于高度不为0的情况,显然花费的时间越少高度越高 ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
- 「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...
- C#下实现的K-Means优化[1]-「离群点检测」
资源下载 #本文PDF版下载 C#下实现的K-Means优化[1]-「离群点检测」 前言 在上一篇博文中,我和大家分享了「C # 下实现的多维基础K-MEANS聚类」的[C#下实现的基础K-MEANS ...
- 「白帽黑客成长记」Windows提权基本原理(下)
上一篇文章我们介绍了信息收集方法和WMIC,今天我们将跟随作者深入学习Windows提权基本原理的内容,希望通过这两篇文章的讲解,大家能够真正掌握这个技能. 推荐阅读:「白帽黑客成长记」Windows ...
- [转帖]「白帽黑客成长记」Windows提权基本原理(下)
「白帽黑客成长记」Windows提权基本原理(下) https://www.cnblogs.com/ichunqiu/p/10968674.html 提权.. 之前还在想 为什么 我的 sqlserv ...
- [转帖]「白帽黑客成长记」Windows提权基本原理(上)
「白帽黑客成长记」Windows提权基本原理(上) https://www.cnblogs.com/ichunqiu/p/10949592.html 我们通常认为配置得当的Windows是安全的,事实 ...
随机推荐
- gvim中对变量的识别
最近在项目中使用gvim打开一个文件,发现对某个变量不识别. 后来发现是gvim中对{$comm_ver},带花括号的变量不识别. 类似这样:parameter memory_spec = " ...
- 《网络攻防》Web基础
20145224陈颢文 <网络攻防>Web基础 基础问题回答 什么是表单: 表单是一个包含表单元素的区域.表单元素是允许用户在表单中输入信息的元素.表单在网页中主要负责数据采集功能. 浏览 ...
- Java 四大作用域总结
一.ServletContext 1.生命周期:当Web应用被加载进容器时创建代表整个web应用的ServletContext对象,当服务器关闭或Web应用被移除时,ServletContext对象跟 ...
- [Android Studio系列(五)] Android Studio手动配置Gradle的方法
1 问题 (1) android sutdio第一次打开一个工程巨慢怎么办? (2) 手动配置Gradle Home为什么总是无效? (3) 明明已经下载了Gradle,配置了gradle home, ...
- 安装MySQL 5.6
记录安装mysql 5.6的全过程 下载安装包(尝试过使用mysql的yum源去安装--如果你的网络够好的话...) 注:我的系统是Centos 7.2的 如下,根据自己的需求去下载 CentOS L ...
- autofac.webapi2
quick start https://autofaccn.readthedocs.io/en/latest/integration/webapi.html#quick-start To get Au ...
- SDOI2019&十二省联考 游记
差不多写完了,然鹅去长郡学习前忘在机房电脑里了 总之是咕了
- tomcat绿色版——运行一闪而过的解决方法
首先配置好jdk的环境变量 %JAVA_HOME%\bin;注意:一定是英文状态下的分号结尾 %TOMCAT%\bin;注意:一定是英文状态下的分号结尾 service.bat install ser ...
- DFS - 深度搜索 - 基于邻接列表表示法
2017-07-25 15:38:00 writer:pprp 在前一篇图基于邻接列表表示法的代码加了一小部分,加了一个DFS函数,visited[N]数组 参考书目:张新华的<算法竞赛宝典&g ...
- 通过HBase API进行开发
http://www.cnblogs.com/netbloomy/p/6683509.html 一.将HBase的jar包及hbase-site.xml添加到IDE 1.到安装HBase集群的任意一台 ...