bzoj 1406 数论
首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0,我们可以求出b,我们可以使x+1|a,x-1|b,然后我们可以构造所有满足被b整除的数,然后判断是否能被a整除, 然后再枚举x+1|b,x-1|a的情况,假设一组合法解不能拆开后被a,b分别整除,那么对于另外的a,b我们肯定可以再次枚举出这个解,然后对于相同的解用set去下重就可以了。
反思:手残打错了符号= =。
/**************************************************************
Problem: 1406
User: BLADEVIL
Language: C++
Result: Accepted
Time:0 ms
Memory:808 kb
****************************************************************/
//By BLADEVIL
#include <cstdio>
#include <set>
using namespace std;
int n;
int main()
{
set<int>tree;
scanf("%d",&n);
for (int a=;a*a<=n;a++)
if (!(n%a)) {
int b=n/a;
for (int i=;i<=n;i+=b) if (!((i+)%a)) tree.insert(i);
for (int i=b-;i<=n;i+=b) if (!((i-)%a)) tree.insert(i);
}
set<int>::iterator p;
if (!tree.size())
printf("None\n"); else
for (p=tree.begin();p!=tree.end();p++)
printf("%d\n",*p);
return ;
}
bzoj 1406 数论的更多相关文章
- BZOJ 1406: [AHOI2007]密码箱
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...
- BZOJ 1406: [AHOI2007]密码箱( 数论 )
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...
- BZOJ 1406 密码箱(数论)
很简洁的题目.求出x^2%n=1的所有x<=n的值. n<=2e9. 直接枚举x一定是超时的. 看看能不能化成有性质的式子. 有 (x+1)(x-1)%n==0,设n=a*b,那么一定有x ...
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- BZOJ 4815 数论
今年的重庆省选? 具体就是,对于每次修改,A[p,q]这个位置, 设d=gcd(p,q) ,则 gcd为d的每一个格子都会被修改,且他们之间有个不变的联系 A[p,q]/p/q==A[k,t]/k/ ...
- BZOJ 2219 数论之神 (CRT推论+BSGS+原根指标)
看了Po神的题解一下子就懂了A了! 不过Po神的代码出锅了-solve中"d-temp"并没有什么用QwQQwQQwQ-应该把模数除以p^temp次方才行. 来自BZOJ讨论板的h ...
- BZOJ 1406 密码箱
直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...
- BZOJ 2219: 数论之神
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2219 N次剩余+CRT... 就是各种奇怪的分类讨论.. #include<cstrin ...
- bzoj 1406
%%% PoPoQQQ x^2=kn+1 x^2-1=kn (x+1)(x-1)=kn 令x+1=k1*n1,x-1=k2*n2,其中k1k2=k,n1n2=n 因此我们可以枚举n的约数中所有大于等于 ...
随机推荐
- 敏捷冲刺Day2
一. 每日会议 1. 照片 2. 昨日完成工作 网页设计与实现的完善 服务器的搭建前期--申请域名 激活域名 搭建服务器 分析接下来的任务与进度 总结前两天的工作 对产品的进一步展望 3. 今日完成工 ...
- DOS工具
winver 检查Windows版本wmimgmt.msc 打开windows管理体系结构wupdmgr windows更新程序wscript windows脚本宿主设置write 写字板w ...
- 修改CSV中的某些值
file.csv文件如下,然后对其中某些值进行变换操作,刚学Powershell的时候操作起来很麻烦,现在看来其实就是对于哈希表的操作. col1,col2,col3,col4 text1,text2 ...
- table中的td限制宽度width也不能让字符过长变成省略号生效?
table中的td限制宽度width也不能让字符过长变成省略号生效? http://blog.csdn.net/java_mr_zheng/article/details/49423247 CSS t ...
- 后缀自动机SAM学习笔记
前言(2019.1.6) 已经是二周目了呢... 之前还是有一些东西没有理解到位 重新写一下吧 后缀自动机的一些基本概念 参考资料和例子 from hihocoder DZYO神仙翻译的神仙论文 简而 ...
- [Leetcode] search in rotated sorted array 搜索旋转有序数组
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e.,0 1 2 4 5 6 7might ...
- React组件通信
1.父子通信 父 -> 子 props子 -> 父 回调函数,父组件通过props向子组件传递一个函数,子组件调用函数,父组件在回调函数中用setState改变自身状态 2.跨层级通信 1 ...
- POJ1742 Coins(男人八题之一)
前言 大名鼎鼎的男人八题,终于见识了... 题面 http://poj.org/problem?id=1742 分析 § 1 多重背包 这很显然是一个完全背包问题,考虑转移方程: DP[i][j]表示 ...
- linux 小技巧
http://blog.csdn.net/xianjie0318/article/details/75712990 1.按内存从大到小排列进程: ps -eo "%C : %p : % ...
- LAMP架构的搭建 和wordpress
[root@yu ~]# yum install httpd php php-mysql mysql-server mysql -y 安装php [root@yu ~]# service http ...