题目描述

为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。 第i头奶牛有一张标明她用餐批次D_i(1 <= D_i <= 3)的卡片。虽然所有N(1 <= N <= 30,000)头奶牛排成了很整齐的队伍但谁都看得出来,卡片上的号码是完全杂乱无章的。 在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列,例如111222333或者333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。 你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。

输入

第1行: 1个整数:N 第2..N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次D_i

输出

第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子

样例输入

5
1
3
2
1
1

样例输出

1


题解

dp

由于每个数只可能是1~3,且每一个数的大小只与其上一个数有关。

所以我们可以令f[i][j]表示前i个数,最后一个为j的最小改动次数。

然后分两种情况来dp。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int d[30001] , f[30001][3] , g[30001][3];
int main()
{
int n , i , j , k , ans = 0x3fffffff;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &d[i]);
memset(f , 0x3f , sizeof(f));
memset(g , 0x3f , sizeof(g));
f[0][0] = g[0][2] = 0;
for(i = 1 ; i <= n ; i ++ )
for(j = 0 ; j < 3 ; j ++ )
for(k = 0 ; k <= j ; k ++ )
if(d[i] == j + 1)
f[i][j] = min(f[i][j] , f[i - 1][k]);
else
f[i][j] = min(f[i][j] , f[i - 1][k] + 1);
for(i = 1 ; i <= n ; i ++ )
for(j = 0 ; j < 3 ; j ++ )
for(k = j ; k < 3 ; k ++ )
if(d[i] == j + 1)
g[i][j] = min(g[i][j] , g[i - 1][k]);
else
g[i][j] = min(g[i][j] , g[i - 1][k] + 1);
for(i = 0 ; i < 3 ; i ++ )
ans = min(ans , min(f[n][i] , g[n][i]));
printf("%d\n" , ans);
return 0;
}

【bzoj1609】[Usaco2008 Feb]Eating Together麻烦的聚餐 dp的更多相关文章

  1. [BZOJ1609] [Usaco2008 Feb] Eating Together麻烦的聚餐 (dp)

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

  2. BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 938  Solved ...

  3. Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1272  Solve ...

  4. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )

    求LIS , 然后用 n 减去即为answer ---------------------------------------------------------------------------- ...

  5. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...

  6. 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1010  Solv ...

  7. [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

  8. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐(dp+被坑)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1609 首先我不得不说,我被这题坑了.题目前边没有说可以不需要3种牛都有啊!!!!!!!!然后我一直在 ...

  9. [Usaco2008 Feb]Eating Together麻烦的聚餐

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

随机推荐

  1. 成都Uber优步司机奖励政策(2月23日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. .net core中Primitives.StringValues 处理

    参考地址:https://stackoverflow.com/questions/36297329/primitives-stringvalues-how-to-deserialize-value-t ...

  3. python简单的socket 服务器和客户端

    服务器端代码 if "__main__" == __name__: try: sock = socket.socket(socket.AF_INET, socket.SOCK_ST ...

  4. 强制删除无用old windows文件夹命令

    磁盘上有旧系统留下的目录比如old.windows.program files.users(中文目录是用户,删除命令里还是要用user才有效),因为目录的特殊设置,导致无法直接删除,需要修改属性和权限 ...

  5. Qt-QPalette-调色板学习

    已经很久没有更新博客了,一是因为换了公司,完全是断网开发了,没有时间来写博客,最主要的就是温水煮青蛙,自己在舒适的环境中越来越懒了,最近打算强制自己更新一波.不知道能坚持多久.由于目前没有具体的Qt项 ...

  6. RF上传图片各种失败坑,使用pywin32来操作windows窗体

    这个上传按钮,使用 Choose File,失败不知道为什么... Name:Choose FileSource:Selenium2Library <test library>Argume ...

  7. Java开发工程师(Web方向) - 02.Servlet技术 - 第2章.Cookie与Session

    第2章--Cookie与Session Cookie与Session 浏览器输入地址--HTTP请求--Servlet--HTTP响应--浏览器接收 会话(session):打开浏览器,打开一系列页面 ...

  8. Vue 兄弟组件通信(不使用Vuex)

    Vue 兄弟组件通信(不使用Vuex) 项目中,我们经常会遇到兄弟组件通信的情况.在大型项目中我们可以通过引入vuex轻松管理各组件之间通信问题,但在一些小型的项目中,我们就没有必要去引入vuex.下 ...

  9. ajax 和 mock 数据

    ajax ajax是一种技术方案,但并不是一种新技术.它依赖的是现有的CSS/HTML/Javascript,而其中最核心的依赖是浏览器提供的XMLHttpRequest对象,是这个对象使得浏览器可以 ...

  10. Memcache的客户端连接系列(一) Java

    声明:本文并非原创,转自华为云帮助中心的分布式缓存服务(Memcached)的用户指南. 关键词: Memcached  客户端 Java Java连接池 Java客户端示例 用户的弹性云服务器已安装 ...