题目大意:给你两个多项式$A,B$,求多项式$C$使得:
$$
C_n=\sum\limits_{x|y=n}A_xB_y
$$
题解:$FWT$,他可以解决形如$C_n=\sum\limits_{x\oplus y=n}A_xB_y$的问题,其中$\oplus$为位运算(一般为$or,and,xor$)

or:

void FWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] += A[i + j];
}
void IFWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] -= A[i + j];
}

  

and:

void FWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
}
void IFWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
for (int i = 0; i < lim; ++i) A[i] /= lim;
}

  

xor:

void FWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
}
void IFWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
for (int i = 0; i < lim; ++i) A[i] /= lim;
}

  

卡点:

C++ Code:

#include <cstdio>
#include <cctype>
inline int read() {
static int ch;
while (isspace(ch = getchar())) ;
return ch & 15;
} #define N 1048576
int lim;
inline void init(const int n) {
lim = 1; while (lim < n) lim <<= 1;
}
inline void FWT(long long *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] += A[i + j];
}
inline void IFWT(long long *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] -= A[i + j];
} int n;
long long A[N], B[N];
int main() {
scanf("%d", &n);
for (int i = 0; i < n; ++i) A[i] = read();
for (int i = 0; i < n; ++i) B[i] = read();
init(n);
FWT(A), FWT(B);
for (int i = 0; i < lim; ++i) A[i] *= B[i];
IFWT(A);
for (int i = 0; i < n; ++i) {
printf("%lld", A[i]);
putchar(i == (n - 1) ? '\n' : ' ');
}
return 0;
}

  

[SOJ #47]集合并卷积的更多相关文章

  1. [SOJ #48]集合对称差卷积

    题目大意:给你两个多项式$A,B$,求多项式$C$使得: $$C_n=\sum\limits_{x\oplus y=n}A_xB_y$$题解:$FWT$ 卡点:无 C++ Code: #include ...

  2. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  3. FMT 与 子集(逆)卷积

    本文参考了 Dance of Faith 大佬的博客 我们定义集合并卷积 \[ h_{S} = \sum_{L \subseteq S}^{} \sum_{R \subseteq S}^{} [L \ ...

  4. BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演

    http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...

  5. loj #161 子集卷积

    求不相交集合并卷积 sol: 集合并卷积?看我 FWT! 交一发,10 以上的全 T 了 然后经过参考别人代码认真比对后发现我代码里有这么一句话: rep(s, , MAXSTATE) rep(i, ...

  6. 【2018北京集训(六)】Lcm

    Portal --> 出错啦qwq(好吧其实是没有) Description 给定两个正整数\(n,k\),选择一些互不相同的正整数,满足这些数的最小公倍数恰好为\(n\),并且这些数的和为\( ...

  7. Weekly Traning Farm 16

    先安利一下这套比赛,大概是doreamon搞的,每周五晚上有一场,虽然没人做题目质量挺高的 http://codeforces.com/group/gRkn7bDfsN/contests(报名前要先报 ...

  8. FWT 学习总结

    我理解的FWT是在二元运算意义下的卷积 目前比较熟练掌握的集合对称差卷积 对于子集卷积和集合并卷积掌握不是很熟练(挖坑ing) 那么就先来谈一谈集合对称差卷积吧 所谓集合对称差卷积 就是h(i)=si ...

  9. UOJ#310.【UNR #2】黎明前的巧克力(FWT)

    题意 给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 99 ...

随机推荐

  1. spring-boot日志操作

    SpringBoot Logback日志配置 Logback的配置介绍: 1.Logger.appender及layout Logger作为日志的记录器,把它关联到应用的对应的context上后,主要 ...

  2. springboot 读写excel

    添加两个坐标: <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</a ...

  3. vcf-tools 笔记

    vcf-query: 通过 vcf-query 提取DP (reads depth). ~/zengs/Tools/vcftools/perl/vcf-query -f '%CHROM\t%POS\t ...

  4. SecureCRT 注册

    http://download.csdn.net/download/xia2011214228/9952983 1.下载后解压到安装目录 2.输入自己要注册的:name company 后genera ...

  5. fastCMS八大核心对象

    fastCMS内置system对象,该对象包含八大核心对象,应用于不同的操作场景,分别是: 1.system.string 对象(处理字符类操作) 2.system.number 对象(处理数字类操作 ...

  6. js屏蔽/过滤 特殊字符,输入就删除掉,实时删除

    1.替换方法: <input type="text" class="domain" onkeyup="this.value=this.value ...

  7. PAT-甲级解题目录

    PAT甲级题目:点这里 pat解题列表 题号 标题 题目类型  10001 1001 A+B Format (20 分)  字符串处理  1003 1003 Emergency (25 分) 最短路径 ...

  8. UVa 10082 - WERTYU 解题报告 - C语言

    1.题目大意: 输入一个错位的字符串(字母全为大写),输出原本想打出的句子. 2.思路: 如果将每个输入字符所对应的应输出字符一一使用if或者switch,则过于繁琐.因此考虑使用常量数组实现. 3. ...

  9. Solium代码测试框架

    Solium, 在solid中,Linter用于标识和修复样式&安全问题 //调用测试 solium -d contracts --fix 源代码名称:Solium 源代码网址:http:// ...

  10. CDH问题集

    1.在CM中添加主机报JDK错误 手动在机器上安装oracle-jdk1.7+update64.然后在CM中选择不安装oracle-jdk即可. 2.HostMoinitor无法与server联系 查 ...