https://www.lydsy.com/JudgeOnline/problem.php?id=3675

https://www.luogu.org/problemnew/show/P3648

http://uoj.ac/problem/104

PS:题面与题解针对于洛谷与uoj版本,bzoj请自觉把“输出做法”删去。

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

参考:洛谷题解(虽然不算参考emmm只是斜率优化写跪了来debug用的)。

不难证出只要分割点固定那么答案固定,因此O(kn^2)不难想。

令s[i]表示前i项前缀和,那么我们有:

f[k][i]=max(f[k][i],f[k-1][j]+(s[i]-s[j])*s[j])

这个式子显然可以斜率优化,维护一个单调不增序列,令k<j<i。

忽略f的前一维,则当f[k]+(s[i]-s[k])*s[k]<=f[j]+(s[i]-s[j])*s[j],把k从队首弹出。

所以g[k,j]=(f[k]-f[j]+sqr(s[j])-sqr(s[k]))/(s[j]-s[k])<=s[i]时弹出k即可。

同时考虑g[k,j]>=g[j,i]时把j弹出,给出证明。

显然当g[j,i]<=s[i]时j不优。

当g[k,j]>=g[j,i]>s[i]时k比j优仍然把j弹出。

//我还naive的想要维护单调不减序列结果各种奇葩错误emmm……

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef double dl;
const int N=1e5+;
const int K=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
ll f[][N];
int n,k,nxt[N][K],q[N],s[N],l,r,now=,pre=;
inline ll sqr(ll k){return k*k;}
inline dl suan(int j,int k){
if(s[j]==s[k])return -1e18;
int i=pre;
return (f[i][k]-f[i][j]+sqr(s[j])-sqr(s[k]))/(dl)(s[j]-s[k]);
}
int main(){
n=read(),k=read();
for(int i=;i<=n;i++)s[i]=s[i-]+read();
for(int j=;j<=k;j++){
now^=,pre^=;l=r=;
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<=(dl)s[i])l++;
int t=q[l];
f[now][i]=f[pre][t]+(ll)(s[i]-s[t])*s[t];nxt[i][j]=t;
while(l<r&&suan(q[r-],q[r])>=suan(q[r],i))r--;
q[++r]=i;
}
}
printf("%lld\n",f[now][n]);
int tmp=nxt[n][k];
while(k){
printf("%d ",tmp);
tmp=nxt[tmp][--k];
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3675 & 洛谷3648 & UOJ104:[Apio2014]序列分割——题解的更多相关文章

  1. 【洛谷3648】[APIO2014] 序列分割(斜率优化DP)

    点此看题面 大致题意: 你可以对一个序列进行\(k\)次分割,每次得分为两个块元素和的乘积,求总得分的最大值. 区间\(DPor\)斜率优化\(DP\) 这题目第一眼看上去感觉很明显是区间\(DP\) ...

  2. 【洛谷 P3648】 [APIO2014]序列分割 (斜率优化)

    题目链接 假设有\(3\)段\(a,b,c\) 先切\(ab\)和先切\(bc\)的价值分别为 \(a(b+c)+bc=ab+bc+ac\) \((a+b)c+ab=ab+bc+ac\) 归纳一下可以 ...

  3. 【洛谷3648/BZOJ3675】[APIO2014]序列分割(斜率优化DP)

    题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一 ...

  4. 洛谷 P3648 [APIO2014]序列分割 解题报告

    P3648 [APIO2014]序列分割 题目描述 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的 ...

  5. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  6. BZOJ3675 [Apio2014]序列分割 【斜率优化dp】

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 3366  Solved: 1355 [Submit][St ...

  7. [Bzoj3675][Apio2014]序列分割(斜率优化)

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4021  Solved: 1569[Submit][Stat ...

  8. 【斜率DP】BZOJ 3675:[Apio2014]序列分割

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1066  Solved: 427[Submit][Statu ...

  9. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

随机推荐

  1. 【完美解决】Spark-SQL、Hive多 Metastore、多后端、多库

    [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 SparkSQL 支持同时连接多种 Meta ...

  2. kaggle入门--泰坦尼克号之灾(手把手教你)

    作者:炼己者 具体操作请看这里-- https://www.jianshu.com/p/e79a8c41cb1a 大家也可以看PDF版,用jupyter notebook写的,视觉效果上感觉会更棒 链 ...

  3. xencenter迁移云主机方法

    问题:POOL中计算节点内存不足. 解决方法:1.为计算节点添加内存(费用高)2.将部分资源迁移到其它POOL中. 方法: 1.选择要迁移的虚拟机 2.选择保存路径 这里可以看到可以批量导出: 注意: ...

  4. 浅析Win8/8.1下安装SQL Server 2005 出现服务项无法正常启动解决方案

    如何才能在微软最新的Windows8/Windows 8.1下正常使用SQL Server 2005套件呢?下面就简单介绍利用文件替换法,解决其服务项无法正常启动的临时方案.当然还是建议使用SQL S ...

  5. 通过 zxing 生成二维码

    二维码现在随处可见,在日常的开发中,也会经常涉及到二维码的生成,特别是开发一些活动或者推广方面的功能时,二维码甚至成为必备功能点.本文介绍通过 google 的 zxing 包生成带 logo 的二维 ...

  6. [CodeForce721C]Journey

    题目描述 Recently Irina arrived to one of the most famous cities of Berland - the Berlatov city. There a ...

  7. mysql 按日期统计

    按年汇总,统计: select sum(mymoney) as totalmoney, count(*) as sheets from mytable group by date_format(col ...

  8. MATLAB画图符号标注

    线型 说明 标记符 说明 颜色 说明 - 实线(默认) + 加号符 r 红色 -- 双划线 o 空心圆 g 绿色 : 虚线 * 星号 b 蓝色 :. 点划线 . 实心圆 c 青绿色 x 叉号符 m 洋 ...

  9. 为什么安装beego和框架的失败 以及常用命令

    1.安装了几个版本,版本之间相互影响. 把没用的删掉 2.网上找的教程存在问题. 都是相互抄袭.最权威的还是官网. which go rm -rf test/ echo path 获取路径 vim ~ ...

  10. Linux内核设计笔记13——虚拟文件系统

    虚拟文件系统 内核在它的底层文件系统系统接口上建立一个抽象层,该抽象层使Linux可以支持各种文件系统,即便他们在功能和行为上存在很大差异. VFS抽象层定义了各个文件系统都支持的基本的.概念上的接口 ...