题意:在一个$n\times m$的网格上,每个格子是薄冰或冰山(网格外什么都没有),有一片薄冰上站着一只企鹅,对于薄冰$(i,j)$,如果不满足($(i-1,j),(i+1,j)$都有东西或$(i,j-1),(i,j+1)$都有东西),那么它会消失,并且会发生连锁反应,现在你可以把一些冰山削成薄冰,问最少多少次操作可以使得企鹅掉入水中

先考虑什么时候企鹅所在的薄冰会消失(以下的图片全部来自官方题解)

如果一个格子的右下角没有冰山,那么它最终会消失,对其他方向也是这样

如果能把整个网格用十字分开,使得某两个相对区域中都没有冰山,那么另外两个区域可以被分开考虑,且之后互相独立,这种分割可以递归地进行

所以对于一个包含企鹅的矩形,我们DP出让它独立于其他格子所需的最小操作次数,再枚举删掉企鹅的四个方向的冰山来更新答案即可

设$f_{i,j,k,l}$表示让$(i,j),(k,l)$这个矩形独立的最小操作次数,枚举它里面的一个点$(x,y)$,以它为中心画十字分开原矩形来转移即可

总时间复杂度$O((nm)^3)$,感觉Atcoder评测机挺快的?

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
void fmin(int&a,int b){
	if(b<a)a=b;
}
int s[41][41],f[41][41][41][41];
char str[41];
int get(int i,int j,int k,int l){
	if(i>k||j>l)return 0;
	return s[k][l]-s[i-1][l]-s[k][j-1]+s[i-1][j-1];
}
int main(){
	int n,m,i,j,k,l,x,y,sx,sy,ans;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++){
		scanf("%s",str+1);
		for(j=1;j<=m;j++){
			if(str[j]=='P'){
				sx=i;
				sy=j;
			}
			s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+(str[j]=='#');
		}
	}
	memset(f,63,sizeof(f));
	ans=f[0][0][0][0];
	f[1][1][n][m]=0;
	for(i=1;i<=sx;i++){
		for(j=1;j<=sy;j++){
			for(k=n;k>=sx;k--){
				for(l=m;l>=sy;l--){
					fmin(ans,f[i][j][k][l]+min(min(get(i,j,sx,sy),get(i,sy,sx,l)),min(get(sx,j,k,sy),get(sx,sy,k,l))));
					for(x=i;x<=k;x++){
						for(y=j;y<=l;y++){
							if(sx<=x&&sy<=y)fmin(f[i][j][x][y],f[i][j][k][l]+get(i,y+1,x,l)+get(x+1,j,k,y));
							if(sx<=x&&y<=sy)fmin(f[i][y][x][l],f[i][j][k][l]+get(i,j,x,y-1)+get(x+1,y,k,l));
							if(x<=sx&&y<=sy)fmin(f[x][y][k][l],f[i][j][k][l]+get(i,y,x-1,l)+get(x,j,k,y-1));
							if(x<=sx&&sy<=y)fmin(f[x][j][k][y],f[i][j][k][l]+get(i,j,x-1,y)+get(x,y+1,k,l));
						}
					}
				}
			}
		}
	}
	printf("%d",ans);
}

[CODE FESTIVAL 2017]Poor Penguin的更多相关文章

  1. 【赛时总结】 ◇赛时·IV◇ CODE FESTIVAL 2017 Final

    ◇赛时-IV◇ CODE FESTIVAL 2017 Final □唠叨□ ①--浓浓的 Festival 气氛 ②看到这个比赛比较特别,我就看了一看--看到粉粉的界面突然开心,所以就做了一下 `(* ...

  2. CODE FESTIVAL 2017 qual B B - Problem Set【水题,stl map】

    CODE FESTIVAL 2017 qual B B - Problem Set 确实水题,但当时没想到map,用sort后逐个比较解决的,感觉麻烦些,虽然效率高很多.map确实好写点. 用map: ...

  3. CODE FESTIVAL 2017 qual B C - 3 Steps【二分图】

    CODE FESTIVAL 2017 qual B C - 3 Steps 题意:给定一个n个结点m条边的无向图,若两点间走三步可以到,那么两点间可以直接连一条边,已经有边的不能连,问一共最多能连多少 ...

  4. [AtCoder Code Festival 2017 QualB D/At3575] 101 to 010 - dp

    [Atcoder Code Festival 2017 QualB/At3575] 101 to 010 有一个01序列,每次可以选出一个101,使其变成010,问最优策略下能操作几次? 考虑像 11 ...

  5. 【AtCoder】CODE FESTIVAL 2017 Final

    A - AKIBA 模拟即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii pair ...

  6. CODE FESTIVAL 2017 qual B

    昨晚因为有点事就去忙了,没打后悔啊 A - XXFESTIVAL Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem ...

  7. 【题解】Popping Balls AtCoder Code Festival 2017 qual B E 组合计数

    蒟蒻__stdcall终于更新博客辣~ 一下午+一晚上=一道计数题QAQ 为什么计数题都这么玄学啊QAQ Prelude 题目链接:这里是传送门= ̄ω ̄= 下面我将分几个步骤讲一下这个题的做法,大家不 ...

  8. AtCoder Code Festival 2017 Team Relay J - Indifferent

    题目大意:共$2n$个价格$p_i$.两人轮流取.你每次取最大的,对方每次随机取.问你取的期望和是多少. 题解:从小到大排序,$\sum\limits_{i=0}^{2n-1} \frac{i*p_i ...

  9. Atcoder CODE FESTIVAL 2017 qual C D - Yet Another Palindrome Partitioning 回文串划分

    题目链接 题意 给定一个字符串(长度\(\leq 2e5\)),将其划分成尽量少的段,使得每段内重新排列后可以成为一个回文串. 题解 分析 每段内重新排列后是一个回文串\(\rightarrow\)该 ...

随机推荐

  1. 大聊Python----进程和线程

    什么是线程? 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. ...

  2. Python与RPC -- (转)

    XML-RPC xmlrpc是使用http协议做为传输协议的rpc机制,使用xml文本的方式传输命令和数据. 一个rpc系统,必然包括2个部分: 1)rpc client,用来向rpc server调 ...

  3. 土司论坛nc反弹神器使用方法

    说明: PS:我本机是linux,因为没有服务器所以使用win7来演示.倘若你是windows可以在本机生成dll以后再放到服务器上面去执行dll即可反弹shell物理机ip:192.168.1.12 ...

  4. Java基础 变量和数据类型及相关操作

    Java基本语法: 1):Java语言严格区分大小写,好比main和Main是完全不同的概念. 2):一个Java源文件里可以定义多个Java类,但其中最多只能有一个类被定义成public类.若源文件 ...

  5. python基础===列表类型的所有方法

    链表类型有很多方法,这里是链表类型的所有方法: append(x) 把一个元素添加到链表的结尾,相当于a[len(a):] = [x] extend(L) 通过添加指定链表的所有元素来扩充链表,相当于 ...

  6. Deep Learning基础--CNN的反向求导及练习

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  7. ubuntu 10.04打开错误

    打开ubuntu时,出现的错误如下: Invalid configuration file. File "E:\Ubuntu12.04.vmwarevm\Ubuntu12.04.vmx&qu ...

  8. FineReport——自定义控件实现填报提交事件和校验

    在报表内部或者在引用报表的HTML页面,定义一个按钮标签,通过FR提供的方法实现提交功能. <button onclick="_g('${sessionID}').writeRepor ...

  9. ES6 module语法加载 import export

    export:暴露,就是把接口暴露出去 import:引入,跟字面意思一样,引入接口 export {} export function demo(){} export var demo1; 这上面的 ...

  10. LeetCode218. The Skyline Problem

    https://leetcode.com/problems/the-skyline-problem/description/ A city's skyline is the outer contour ...