【BZOJ 1998】 1998: [Hnoi2010]Fsk物品调度(双向链表+并查集+置换)
1998: [Hnoi2010]Fsk物品调度
Description
现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位。流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子。Lostmonkey要按照以下规则重新排列这些盒子。 规则由5个数描述,q,p,m,d,s,s表示空位的最终位置。首先生成一个序列c,c0=0,ci+1=(ci*q+p) mod m。接下来从第一个盒子开始依次生成每个盒子的最终位置posi,posi=(ci+d*xi+yi) mod n,xi,yi是为了让第i个盒子不与之前的盒子位置相同的由你设定的非负整数,且posi还不能为s。如果有多个xi,yi满足要求,你需要选择yi最小的,当yi相同时选择xi最小的。 这样你得到了所有盒子的最终位置,现在你每次可以把某个盒子移动到空位上,移动后原盒子所在的位置成为空位。请问把所有的盒子移动到目的位置所需的最少步数。Input
第一行包含一个整数t,表示数据组数。接下来t行,每行6个数,n,s,q,p,m,d意义如上所述。 对于30%的数据n<=100,对于100%的数据t<=20,n<=100000,s<n。其余所有数字均为不超过100000的正整数。 <="" div="">Output
对于每组数据输出一个数占一行,表示最少移动步数。Sample Input
1
8 3 5 2 7 4Sample Output
6HINT
说明:第1个到第7个盒子的最终位置依次是:2 5 6 4 1 0 7
计算过程可能超过整型范围。Source
【分析】
啊,我好笨。
先看那两个公式。
ci+1=(ci*q+p) mod m
posi=(ci+d*xi+yi) mod n
观察题目就知道主要是求pos数组,后面的就是置换的很基本的东西,弄成循环就好了。
pos数组怎么求呢,当然暴力是会超时的。
观察一下他的形式,发现如果yi也固定,那么走的是一个环。
如果这个环里面所有元素都被取走了,那么就跳到下一个环,直到环里面有东西为止。
就是模拟一个这样的过程,然后当然虽说是跳直到找到有环,但当然还是不能这样做的,所以我用了并查集和双向链表搞这个东西。
环的数量是gcd(n,d)【表示我一开始还搞错这个很久
求出pos数组之后,把置换分成互不相交的循环
若循环长度>1,且空格在里面,则ans+=L-1
否则ans+=L+1
【最后那部分还是很简单的】
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010
#define INF 0xfffffff
#define LL long long int n,s,m,d;
int nt[Maxn],lt[Maxn],fa[Maxn];//环
int ntt[Maxn],ltt[Maxn],fax[Maxn];//环集
int pos[Maxn],id[Maxn];
LL c[Maxn],q,p; int ffa(int x)
{
if(fa[x]!=x) fa[x]=ffa(fa[x]);
return fa[x];
} int ffax(int x)
{
if(fax[x]!=x) fax[x]=ffax(fax[x]);
return fax[x];
} int gcd(int a,int b)
{
if(b==) return a;
return gcd(b,a%b);
} bool vis[Maxn]; int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int L;
scanf("%d%d%lld%lld%d%d",&n,&s,&q,&p,&m,&d);
d%=n;
for(int i=;i<n;i++) nt[i]=(i+d)%n;
for(int i=;i<n;i++) lt[i]=(i-d+n)%n;
c[]=;
for(int i=;i<n;i++) c[i]=(c[i-]*q+p)%m;
for(int i=;i<n;i++) fa[i]=i;
for(int i=;i<n;i++) c[i]%=n;
if(d!=) L=gcd(n,d);
else L=n;
for(int i=;i<L;i++) fax[i]=i;
for(int i=;i<L;i++)
{
id[i]=i;
int x=nt[i];
while(x!=i)
{
id[x]=i;
x=nt[x];
}
} memset(vis,,sizeof(vis));
for(int i=;i<n;i++)
{
int nw=ffax(id[c[i]]); pos[i]=ffa((c[i]+(nw-id[c[i]]+L)%L)%n); if(i==) pos[i]=s,nw=s%L;
if(lt[pos[i]]==pos[i])
{
fax[nw]=(nw+)%L;
}
else
{
nt[lt[pos[i]]]=nt[pos[i]];
lt[nt[pos[i]]]=lt[pos[i]];
fa[pos[i]]=nt[pos[i]];
}
}
LL ans=;
memset(vis,,sizeof(vis));
for(int i=;i<n;i++) if(vis[i]==)
{
int x=i,cnt=;
bool p=;
while(vis[x]==)
{
cnt++;
if(x==s) p=;
vis[x]=;
x=pos[x];
}
if(cnt>)
{
if(p) ans+=cnt-;
else ans+=cnt+;
}
}
printf("%d\n",ans);
}
return ;
}
2017-01-13 09:30:25
【BZOJ 1998】 1998: [Hnoi2010]Fsk物品调度(双向链表+并查集+置换)的更多相关文章
- BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换
BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置 ...
- 【BZOJ 1998】[Hnoi2010]Fsk物品调度 置换群+并查集
置换群的部分水得一比,据说是经典的置换群理论(然而我并不知道这理论是啥).重点就在于怎么求pos!!!容易发现这个东西是这样的:每次寻找pos,先在本环里找,找不到再往下一个环里找,直到找到为止……一 ...
- BZOJ 1998: [Hnoi2010]Fsk物品调度 [置换群 并查集]
传送门 流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子.Lostmonkey要按照以下规则重新排列这些盒子. 规则由5个数描述,q,p,m,d,s,s表示空 ...
- [BZOJ1998][Hnoi2010]Fsk物品调度
[BZOJ1998][Hnoi2010]Fsk物品调度 试题描述 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号,一开 ...
- 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)
[BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...
- 【BZOJ】1998: [Hnoi2010]Fsk物品调度
http://www.lydsy.com/JudgeOnline/problem.php?id=1998 题意: 给你6个整数$n,s,q,p,m,d$. 有$n$个位置和$n-1$个盒子,位置编号从 ...
- HNOI 2010 物品调度 并查集 置换
题意: 题意有点细,暂不概括.请仔细审题. 分析: 我们先要把c生成出来. 记得颜神讲这道题,首先表明,这道题有两个问题需要处理. 第一个是要先定位,第二个是要求最小移动步数. 定位时对于每一个物品i ...
- 【BZOJ】1202: [HNOI2005]狡猾的商人(并查集+前缀和)
http://www.lydsy.com/JudgeOnline/problem.php?id=1202 用并查集+前缀和. 前缀和从后向前维护和,并查集从前往后合并 对于询问l, r 如果l-1和r ...
- 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集
最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...
随机推荐
- 【BZOJ2850】巧克力王国 [KD-tree]
巧克力王国 Time Limit: 60 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 巧克力王国里的巧克力都是由牛奶和 ...
- hdu 2157 How many ways?? ——矩阵十题第八题
Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, ...
- react-native中使用Echarts,自己使用WebView封装Echarts经验
1.工作中遇到的问题 我们在使用react-native肯定遇到过各种奇葩的问题,比如引入Echarts时候莫名报错,但是Echarts官网明显告诉我们可以懒加载的,这是因为基本上js大部分原生的组件 ...
- python中requests库中文乱码问题
当使用这个库的时候经常会出现各种乱码的情况. 首先要知道: text返回的是处理过的unicode的数据. content返回的是bytes的原始数据 也就是说r.content比r.text更加节省 ...
- java===java基础学习(15)---抽象,接口
抽象 //这就是一个抽象类 abstract class Animal { String name; int age; abstract public void cry(); } //当一个类继承的父 ...
- bzoj 1015 星球大战starwar
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1015 题解: 如果按照题目的意思,每次删点.删边太困难了……于是采用逆向思维,构造出最后的 ...
- 【VIPM技巧】多版本LabVIEW无法连接问题
前言 今天小编突然用到一个Toolkit,遂去VIPM上搜索,虽然可以找到但是无法连接成功LabVIEW,配置好一阵才解决.这里记录一下整个思路,供需要的人参考 问题记录 VIMP连接超时 问题解决 ...
- seq和{ }生成序列
基本用法 [root@C ~]# seq 5 1 2 3 4 5 [root@C ~]# echo {1..5} 1 2 3 4 5 #步进输出 [root@C ~]# seq 1 2 5 1 3 5 ...
- Struts2学习笔记02 之 使用
一.页面向Action传参 1.基本属性注入,页面命名name,action提供成员变量name并提供set方法. 2.域模型注入:页面用user.name对象点属性形式.action成员user对象 ...
- sharding-jdbc 实现分表
Sharding-JDBC 简介 Sharding-JDBC直接封装JDBC API,可以理解为增强版的JDBC驱动,旧代码迁移成本: 可适用于任何基于Java的ORM框架,如:JPA.HIberna ...