题意

给定一个包含$n$个数的序列$a$,在其中任选若干个数,使得他们的和对$m$取模后最大。($n\leq 35$)

题解

显然,$2^n$的暴枚是不现实的...,于是我们想到了折半枚举,分成两部分暴枚,然后考虑合并,合并的时候用two-pointers思想扫一遍就行了。

其实这是一道折半枚举+Two-Pointers的很好的练手题

//最近CodeForces有点萎,可能会JudgementError,但已经评测过了,能AC,多交几次应该可以
#include <cstdio>
#include <algorithm>
using std::max;
using std::sort; const int N = 40, K = 19;
int n, m, k, ans, totx, toty;
long long a[N], x[1 << K], y[1 << K]; template <typename T>
inline void read(T &x) {
x = 0; char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
} void dfsx (int i, long long sum) {
if (i > k) { x[++totx] = sum % m; return ; }
dfsx (i + 1, sum + a[i]);
dfsx (i + 1, sum);
} void dfsy (int i, long long sum) {
if (i > n) { y[++toty] = sum % m; return ; }
dfsy (i + 1, sum + a[i]);
dfsy (i + 1, sum);
} int main () {
read(n), read(m), k = n >> 1;
for (int i = 1; i <= n; ++i) read(a[i]);
dfsx(1, 0), dfsy(k + 1, 0);
sort(&x[1], &x[totx + 1]), sort(&y[1], &y[toty + 1]);
int l = 1, r = toty;
while (l <= totx) {
while (r && x[l] + y[r] >= m) --r; if(!r) break;
ans = max(ans, int((x[l] + y[r]) % m)), ++l;
}
printf ("%d\n", ans);
return 0;
}

CodeForces888E Maximum Subsequence(折半枚举+two-pointers)的更多相关文章

  1. 【CF888E】Maximum Subsequence 折半搜索

    [CF888E]Maximum Subsequence 题意:给你一个序列{ai},让你从中选出一个子序列,使得序列和%m最大. n<=35,m<=10^9 题解:不小心瞟了一眼tag就一 ...

  2. codeforces 880E. Maximum Subsequence(折半搜索+双指针)

    E. Maximum Subsequence time limit per test 1 second memory limit per test 256 megabytes input standa ...

  3. Codeforces 888E:Maximum Subsequence(枚举,二分)

    You are given an array a consisting of n integers, and additionally an integer m. You have to choose ...

  4. CF 888E Maximum Subsequence——折半搜索

    题目:http://codeforces.com/contest/888/problem/E 一看就是折半搜索?……然后排序双指针. 两个<m的数加起来如果>=m,一定不会更新答案.因为- ...

  5. [Codeforces888E]Maximum Subsequence(暴力+meet-in-the-middle)

    题意:给定n.m.有n个数,选出若干数加起来对m取模,求最大值 n<=35 如果直接暴力就是235,会T, 这里用到一个思想叫meet-in-the-middle, 就是把数列分成两半分别搜索, ...

  6. Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))

    888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...

  7. Codeforces 888E Maximum Subsequence

    原题传送门 E. Maximum Subsequence time limit per test 1 second memory limit per test 256 megabytes input ...

  8. 1007. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

  9. PAT - 测试 01-复杂度2 Maximum Subsequence Sum (25分)

    1​​, N2N_2N​2​​, ..., NKN_KN​K​​ }. A continuous subsequence is defined to be { NiN_iN​i​​, Ni+1N_{i ...

随机推荐

  1. 【设计模式】 模式PK:装饰模式VS适配器模式

    1.概述 装饰模式和适配器模式在通用类图上没有太多的相似点,差别比较大,但是它们的功能有相似的地方:都是包装作用,都是通过委托方式实现其功能.不同点是:装饰模式包装的是自己的兄弟类,隶属于同一个家族( ...

  2. redhat 7 安装oracle12.1

    https://oracle-base.com/articles/12c/oracle-db-12cr1-installation-on-oracle-linux-7   一定要配置yum本地源   ...

  3. 【BZOJ】1602:[Usaco2008 Oct]牧场行走

    [算法]最近公共祖先(LCA) [题解] 点x,y到最近公共祖先z的距离之和相当于x,y到根的距离减去两倍z到根的距离, 即ans=dis[x]+dis[y]-2*dis[z] 记得边数组要开两倍!! ...

  4. 每个 Java 开发者都应该知道的 5 个注解

    自 JDK5 推出以来,注解已成为Java生态系统不可缺少的一部分.虽然开发者为Java框架(例如Spring的@Autowired)开发了无数的自定义注解,但编译器认可的一些注解非常重要. 在本文中 ...

  5. chrome表单自动填充导致input文本框背景变成偏黄色问题

    你曾遇到过吗? 困扰宝宝好久的问题,本以为是什么插件导致的,结果是chrome浏览器自动填充文本时默认的样式,搜嘎. 一.修改自动填充input文本框背景色: 使用以下代码 可以设置自己的想要的默认文 ...

  6. Angular2.0 基础: Form

    对于Angular2.0 的Form表单中的隐藏和验证,个人觉得还是挺有意思的. 1.通过ngModel 跟踪修改状态与验证. 在表单中使用 ngModel 可以获得更多的控制权,包括一些常用的验证. ...

  7. fragment+tabhost与viewpager

    学到哪里写到哪里吧 A.viewpager a.用V4包中的fragment,activity继承FragmentActivity b.布局中加入<android.support.v4.view ...

  8. c语言中的size_t

    size_t unsigned int 类型,无符号,它的取值没有负数.用来表示 参数/数组元素个数,sizeof 返回值,或 str相关函数返回的 size 或 长度.sizeof 操作符的结果类型 ...

  9. mssql手工注入2

    --+ 先说一些函数的说明: substring(str,start,len) 截取字符串的作用,第一个参数为要截取的字符串,第二个参数为从哪里开始截取,第三个参数为截取的长度 ascii(char) ...

  10. Java基础 变量和数据类型及相关操作

    Java基本语法: 1):Java语言严格区分大小写,好比main和Main是完全不同的概念. 2):一个Java源文件里可以定义多个Java类,但其中最多只能有一个类被定义成public类.若源文件 ...