【一】

线性回归直觉上的解释

得到Ein = mean(y - wx)^2

【二】

w的推导

Ein = 1/N || xw - y||^2

连续、可微、凸函数

在各个方向的偏微分都是0

Ein = 1/N (wTxTxw - 2wTxTy + yTy)

Ein := 1/N (wTaw - 2wTb + c)

向量求导,aw - b = 0

xTxw = xTy

w = (xTx)^-1(xTy)

xTx的维度为dxd, x是nxd, y是nx1

可定义为 w = x^{+} y

那么有yHat = xx^{+} y

hat matrix: xx^{+}, H

【三】

没有学习过程,close-form solution, No!

计算逆矩阵的过程就是在学习。只要Eout是好的,学习这件事情就已经发生了。

从另一个角度看Eout会很好:(第一角度:vc dimension)

之前vc的观点:某些点,现在的观点:平均

几何解释:

样本数量的维度,y是n维向量,x是d个n维向量,展开。

H算子的作用, 作用在y上,得到在x展开空间中的向量

(I - H)算子的作用,得到与x垂直的向量

trace(I-H) = n-d+1

可以认为Ein就是y-yHat,就是noise在垂直方向的投影,就等于(I-H)noise

Ein = 1/N ||y - yHat|| = 1 - (d+1)/n * noiseLevel

同理,Eout = 1/N ||y-yHat||  = 1 + (d-1)/n * noiseLevel

Ein 和 Eout的差距,2(d+1)/n

【四】

linear classification和linear regression的差别

EReg > ECls

EClsOut < EClsIn + c < ERegIn + c

因此一个lr解也是一个比较好的lc的解

【机器学习基石笔记】九、LinearRegression的更多相关文章

  1. 机器学习基石笔记:01 The Learning Problem

    原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给 ...

  2. 机器学习基石笔记:04 Feasibility of Learning

    原文地址:https://www.jianshu.com/p/f2f4d509060e 机器学习是设计算法\(A\),在假设集合\(H\)里,根据给定数据集\(D\),选出与实际模式\(f\)最为相近 ...

  3. 林轩田机器学习基石笔记4—Feasibility of Learning

    上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Lear ...

  4. 林轩田机器学习基石笔记3—Types of Learning

    上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要 ...

  5. 林轩田机器学习基石笔记2—Learning to Answer Yes/No

    机器学习的整个过程:根据模型H,使用演算法A,在训练样本D上进行训练,得到最好的h,其对应的g就是我们最后需要的机器学习的模型函数,一般g接近于目标函数f.本节课将继续深入探讨机器学习问题,介绍感知机 ...

  6. 林轩田机器学习基石笔记1—The Learning Problem

    机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Lear ...

  7. 机器学习基石笔记:Homework #1 PLA&PA相关习题

    原文地址:http://www.jianshu.com/p/5b4a64874650 问题描述 程序实现 # coding: utf-8 import numpy as np import matpl ...

  8. 机器学习基石笔记:03 Types of Learning

    原文地址:https://www.jianshu.com/p/86b2a9cef742 一.学习的分类 根据输出空间\(Y\):分类(二分类.多分类).回归.结构化(监督学习+输出空间有结构): 根据 ...

  9. 机器学习基石笔记:02 Learning to Answer Yes/No、PLA、PA

    原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即 ...

随机推荐

  1. 采集baidu搜索信息的java源代码实现(大部分转发,少量自己修改)(使用了htmlunit和Jsoup)(转发:https://blog.csdn.net/zhaohang_1/article/details/44731039)

    1.maven依赖 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www ...

  2. Hbase 学习笔记1----shell

    Hbase 是一个分布式的.面向列的开源数据库,其实现是建立在google 的bigTable 理论之上,并基于hadoop HDFS文件系统.     Hbase不同于一般的关系型数据库(RDBMS ...

  3. Hadoop的分布式架构改进与应用

    1.  背景介绍 谈到分布式系统,就不得不提到Google的三驾马车:GFS[1],MapReduce[2]和BigTable[3]. 虽然Google没有开源这三个技术的实现源码,但是基于这三篇开源 ...

  4. 格式化字符串--format用法

    print("hello {leon}".format(leon="world!")) #format 是一个格式化字符穿的方法. print("he ...

  5. js使用经验之谈

    1.  js 对象,先有的起作用.CSS属性,后有的起作用. 2. 方法中使用submit提交表单,如果提交后面还有代码需要执行,不能保证顺序.例如,提交后关闭页面,很可能会在提交前关闭页面,导致提交 ...

  6. django使用migrations迁移版本和数据库中报错解决方案

    1.到数据库表django_migrations中查看app中看看app列 2.到项目对应的app模块中打开migrations文件查看生成的文件与数据库app列中的是不是一样 3.找到哪里不一致的文 ...

  7. TCP的握手与挥手

    轻轻的TCP走了,正如TCP轻轻的来,TCP挥一挥手,传递了不知多少信息 看到哪,记到哪,想起哪,就看哪,这就是我的博客园,很随性 ---------------------------------- ...

  8. [nowcoder]再编号

    链接:https://www.nowcoder.com/acm/contest/158/C 每变化一次,tot=tot*(n-1),且每两个数之差delta*=-1,直接根据这两个性质暴力循环1000 ...

  9. [BZOJ2730]矿场搭建

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  10. 求逆元 HDU 2516

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...