[loj#2566][BZOJ5333] [Sdoi2018]荣誉称号 树形dp
#2566. 「SDOI2018」荣誉称号
休闲游戏玩家小 Q 不仅在算法竞赛方面取得了优异的成绩,还在一款收集钻石的游戏中排名很高。 这款游戏一共有 n 种不同类别的钻石,编号依次为 1 到 n。小 Q 已经玩了这款游戏很久了,对于第 i 种钻石,他已经收集到了 ai 个。这款游戏最大的亮点就是,钻石只有一种获得途径,那就是从商城中 购买。具体来说,第 i 种钻石的单价为 bi 点券。为了鼓励玩家充值,每种钻石都没有数量上限,只要肯 充钱,就可以拥有任意多的钻石。但是这款游戏并没有开发 “丢弃道具” 功能,因此小 Q 不能通过丢弃 钻石去完成任务。 最近这款游戏推出了一个限时成就任务,完成任务的玩家可以获得荣誉称号,而完成任务条件则是: 给定正整数 k 和 m,对于任意一个整数 x(2k ≤ x ≤ n),ax + a⌊ x 2 ⌋ + a⌊ x 4 ⌋ + a⌊ x 8 ⌋ + ... + a⌊ x 2k ⌋ 都要是 m 的倍数。 高玩小 Q 当然想完成这个限时成就任务,但是在充钱之前他想知道他究竟需要多少点券才能完成这 个任务。请写一个程序帮助小 Q 计算最少需要的点券数量。
Input 第一行包含一个正整数 T,表示测试数据的组数。 每组数据第一行包含 9 个正整数 n, k, m, p, SA, SB, SC, A, B,其中 n 表示钻石种类数,k, m 表示任 务条件。 为了在某种程度上减少输入量,a[] 和 b[] 由以下代码生成:
unsigned int SA, SB, SC; int p, A, B;
unsigned int rng61(){
SA ^= SA << 16;
SA ^= SA >> 5;
SA ^= SA << 1;
unsigned int t = SA;
SA = SB;
SB = SC;
SC ^= t ^ SA;
return SC;
}
void gen(){
scanf("%d%d%d%d%u%u%u%d%d", &n, &k, &m, &p, &SA, &SB, &SC, &A, &B);
for(int i = 1; i <= p; i++)scanf("%d%d", &a[i], &b[i]);
for(int i = p + 1; i <= n; i++){
a[i] = rng61() % A + 1;
b[i] = rng61() % B + 1;
}
}
如对数据的生成方式仍有疑问,请参考下发文件中的参考程序。
输出格式
对于每组数据,输出一行一个整数,即最少需要的点券数量。
样例
输入样例 1
2
3 1 2 3 11111 22222 33333 1 1
1 5
2 3
3 6
7 2 3 7 11111 22222 33333 1 1
6 9
4 5
3 7
5 2
2 4
1 7
9 6
输出样例 1
3
14
样例 2
见下发文件。
数据范围与提示
• 1 ≤ T ≤ 10,
• 1 ≤ k ≤ 10 且 2 k ≤ n,
• 1 ≤ p ≤ min(n, 100000),10000 ≤ SA, SB, SC ≤ 1000000,
• 1 ≤ A, B, ai , bi ≤ 107。
子任务 1(30 分):满足 1 ≤ n ≤ 1000 且 m = 2。
子任务 2(40 分):满足 1 ≤ n ≤ 10^5 且 m ≤ 200。
子任务 3(30 分):满足 1 ≤ n ≤ 10^7 且 m ≤ 200。
首先我们发现他是一颗完全二叉树。
对于一条深度为i的点,我们发现深度为i+k的点与他%m同余一个节点的两个叶子也同余。
于是我们可以将标号大于2^k的点去除,将他的贡献加到编号为1-2^k的点上。
我们处理出编号为1-2^k的点中将他%m的值改为j的最小代价g[i][j]
显然g可以用dp求出。
之后我们在大小为2^k的树上做树形dp。
f[i][j]表示节点i到叶子的和%m余j的最小代价。
答案为f[1][0]
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define maxn 10000005
#define ll long long
using namespace std;
inline int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
int T;int n,k,m;
unsigned int SA, SB, SC;int p, A, B;
int a[maxn],b[maxn];
unsigned int rng61(){
SA ^= SA << ;SA ^= SA >> ;SA ^= SA << ;
unsigned int t = SA;
SA = SB;SB = SC;SC ^= t ^ SA;
return SC;
}
void gen(){
n=read(),k=read(),m=read(),p=read();
scanf("%u%u%u%d%d",&SA, &SB, &SC, &A, &B);
for(int i = ; i <= p; i++)scanf("%d%d", &a[i], &b[i]);
for(int i = p + ; i <= n; i++){
a[i] = rng61() % A + ;
b[i] = rng61() % B + ;
}
}
ll g[][],f[][],sum[];
int lim;
void init() {
memset(g,,sizeof(g));
memset(sum,,sizeof(sum));
memset(f,,sizeof(f));
}
int main() {
T=read();
while(T--) {
gen();init();k++;
lim=(<<k)-;
int l=;
for(int i=;i<=n;i++) {
int j=i;
while((j>>l)>lim) l+=k;
j>>=l;
a[i]%=m;sum[j]+=b[i];
g[j][]+=(m-a[i])*b[i];
g[j][a[i]]-=m*b[i];
}
for(int i=;i<=lim;i++)
for(int j=;j<m;j++) g[i][j]+=g[i][j-]+sum[i];
for(int i=lim;i>=;i--) {
if(i*>lim) {
for(int j=;j<m;j++) f[i][j]=g[i][j];
continue;
}
for(int j=;j<m;j++) {
f[i][j]=214748364700000000ll;
for(int k=;k<m;k++) {
int tt=j-k;tt=tt<?tt+m:tt;
f[i][j]=min(f[i][j],f[i<<][tt]+f[(i<<)+][tt]+g[i][k]);
}
}
}
printf("%lld\n",f[][]);
}
}
[loj#2566][BZOJ5333] [Sdoi2018]荣誉称号 树形dp的更多相关文章
- BZOJ5333 [Sdoi2018]荣誉称号 【差分 + 树形dp】
题目链接 BZOJ5333 题解 看到式子,立即想到二叉树上一个点及其\(k\)个父亲权值和[如果有的话]模\(m\)意义下为\(0\) 考虑如何满足条件 我们假设\(1\)号为第\(0\)层 那么我 ...
- bzoj5333: [Sdoi2018]荣誉称号
请不要去改题目给的输入,不然你会wa穿... 这么故弄玄虚的题目,肯定要先转换问题 看到这个不断的除2想起别人家的线段树的写法...x的两个孩子是x<<1和x<<1|1 然后问 ...
- 2018.09.01 loj#2330. 「清华集训 2017」榕树之心(树形dp)
传送门 树形dp好题啊. 我们用w[i]" role="presentation" style="position: relative;">w[ ...
- 【BZOJ5333】荣誉称号(动态规划)
[BZOJ5333]荣誉称号(动态规划) 题面 BZOJ 洛谷 题解 今天早上贱狗老师讲的.然而我还是不会. 只好照着\(zsy\)代码大力理解一波. 首先观察等式,如果比较熟悉线段树,会发现就是线段 ...
- bzoj4455 & loj2091 [Zjoi2016]小星星 容斥原理+树形DP(+状压DP?)
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4455 https://loj.ac/problem/2091 题解 很不错的一道题.(不过在当 ...
- 树形DP 学习笔记
树形DP学习笔记 ps: 本文内容与蓝书一致 树的重心 概念: 一颗树中的一个节点其最大子树的节点树最小 解法:对与每个节点求他儿子的\(size\) ,上方子树的节点个数为\(n-size_u\) ...
- P5405-[CTS2019]氪金手游【树形dp,容斥,数学期望】
前言 话说在\(Loj\)下了个数据发现这题的名字叫\(fgo\) 正题 题目链接:https://www.luogu.com.cn/problem/P5405 题目大意 \(n\)张卡的权值为\(1 ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
随机推荐
- 纯CSS实现的风车转动效果特效演示
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- jquery实现拖拽进度条并显示百分比
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht ...
- 牛客326B 背单词
传送门:https://ac.nowcoder.com/acm/contest/326/B 题意:给你一个n,你需有找有多少个长度从1~n 的单词,满足最长连续元音少于A个并且最长连续辅音长度少于B. ...
- hibernate、mybatis、beetsql的学习
先推荐两篇文章吧: https://my.oschina.net/xiandafu/blog/617542 http://blog.csdn.net/xiandafu/article/details/ ...
- Android核心类源码分析
Handler流程1.首先Looper.prepare()在本线程中保存一个Looper实例,然后该实例中保存一个MessageQueue对象:因为Looper.prepare()在一个线程中只能调用 ...
- 10.nginx+ffmpeg上搭建HLS切片
1.首先介绍一下HLS协议: (1)简介 这个协议是由苹果公司提出并推广使用的,维基百科介绍如下: HTTP Live Streaming(缩写是HLS)是一个由苹果公司提出的基于HTTP的流媒体网络 ...
- 51Nod 1009 数字1的个数 | 数位DP
题意: 小于等于n的所有数中1的出现次数 分析: 数位DP 预处理dp[i][j]存 从1~以j开头的i位数中有几个1,那么转移方程为: if(j == 1) dp[i][j] = dp[i-1][9 ...
- HDU 5696 区间的价值 暴力DFS
Problem Description 我们定义"区间的价值"为一段区间的最大值*最小值. 一个区间左端点在L,右端点在R,那么该区间的长度为(R−L+1). 现在聪明的杰西想要知 ...
- 2015/8/30 Python基础(4):序列操作符
序列是指成员有序排列,可以通过下标偏移量访问的类型.Python序列包括:字符串.列表和元组.序列的每个元素可以指定一个偏移量得到,多个元素是通过切片操作得到的.下标偏移量从0开始计数到总数-1结束. ...
- [洛谷P2375] [NOI2014]动物园
洛谷题目链接:[NOI2014]动物园 题目描述 近日,园长发现动物园中好吃懒做的动物越来越多了.例如企鹅,只会卖萌向游客要吃的.为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决 ...