poj-1113
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 31419 | Accepted: 10619 |
Description
Your task is to help poor Architect to save his head, by writing a
program that will find the minimum possible length of the wall that he
could build around the castle to satisfy King's requirements.
The task is somewhat simplified by the fact, that the King's castle
has a polygonal shape and is situated on a flat ground. The Architect
has already established a Cartesian coordinate system and has precisely
measured the coordinates of all castle's vertices in feet.
Input
first line of the input file contains two integer numbers N and L
separated by a space. N (3 <= N <= 1000) is the number of vertices
in the King's castle, and L (1 <= L <= 1000) is the minimal
number of feet that King allows for the wall to come close to the
castle.
Next N lines describe coordinates of castle's vertices in a
clockwise order. Each line contains two integer numbers Xi and Yi
separated by a space (-10000 <= Xi, Yi <= 10000) that represent
the coordinates of ith vertex. All vertices are different and the sides
of the castle do not intersect anywhere except for vertices.
Output
to the output file the single number that represents the minimal
possible length of the wall in feet that could be built around the
castle to satisfy King's requirements. You must present the integer
number of feet to the King, because the floating numbers are not
invented yet. However, you must round the result in such a way, that it
is accurate to 8 inches (1 foot is equal to 12 inches), since the King
will not tolerate larger error in the estimates.
Sample Input
9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200
Sample Output
1628
Hint
Source
附:
针对上面的公式(1)copy一个证明:http://blog.sina.com.cn/s/blog_687916bf0100jq9g.html
证明如下:假如顺时针给出四个点A、B、C、D。组成了凸四边形ABCD。我们不妨过A点作AE垂直于AB,同时过A点再作AF垂直于AD,过B点 作BG、BH分别垂直于AB、BC。连结EG,垂线段的长度为L,过A点以AE为半径作一段弧连到AF,同理,使GH成为一段弧。此时 EG=AB(边),AB段城墙的最小值为EF+弧EF+弧GH=AB+弧EF+弧GH。对所有点进行同样的操作后,可知城墙的最小值=四边形的周长+相应 顶点的弧长(半径都为L)之和。
下面证明这些顶点弧长组成一个圆。依然以前面的四边形为例。A、B、C、D四顶点各成周角,总和为360*4=1440度,四边形内角和为360度,每个顶点作两条垂线,总角度为4*2*90=720度,所以总圆周角为1440-360-720=360度,刚好组成圆。
所以四边形ABCD的围墙最短= 四边形的周长+圆周长。
推广到任意多边形,用同样的方法,城墙最短=凸包的周长 + 以L为半径的圆的周长。
首先,我们得出城墙最短=凸包的周长 + 相应顶点的弧长(半径都为L)之和。
再证明 相应顶点的弧长(半径都为L)之和=以L为半径的圆的周长。
事实上,设凸包顶点为n,n个顶点组成n个周角,角度为360*n=2*180*n,凸包的内角和为180*(n-2),作了2*n条垂线,和为2*n*90=180*n,所以总圆周角为2*180*n-180*(n-2)-180*n=360,组成圆。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cmath>
#define pi 3.141592653
#define maxn 1010
#define eps 1e-8
using namespace std;
int Stack[maxn];
int top ;
struct Point
{
int x;
int y;
Point() {}
} List[maxn];
int cross(Point p0,Point p1,Point p2) //计算叉积 p0p1 X p0p2
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
double dist(Point p1,Point p2) //计算 p1p2的 距离
{
return sqrt((double)(p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y));
}
bool cmp(Point p1,Point p2)
{
int tmp = cross(List[],p1,p2);
if(tmp >) return true;
else if(tmp== && dist(List[],p1) < dist(List[],p2)) return true;
else return false;
}
void graham(int n)
{
// scanf("%d %d",&List[0].x,&List[0].y);
Point p0;
int k=;
p0 = List[];
for(int i=; i<n; i++)
{
// scanf("%d %d",&List[i].x,&List[i].y);
if( (p0.y>List[i].y) || ((p0.y==List[i].y)&&(p0.x>List[i].x)) )
{
p0 = List[i];
k = i;
}
}
List[k] = List[];
List[] = p0;
sort(List+,List+n,cmp);
if(n == )
{
top = ;
Stack[] = ;
}
if(n == )
{
top = ;
Stack[] = ;
Stack[] = ;
}
if(n > )
{
Stack[] = ;
Stack[] = ;
top = ;
for(int i=; i<n; i++)
{
while(top > && cross(List[Stack[top-]],List[Stack[top]],List[i])<=) top--;
top++;
Stack[top] = i;
}
}
}
int main()
{
// freopen("in.txt","r",stdin);
int n,l;
while(~scanf("%d %d",&n,&l))
{
memset(List,,sizeof(List));
memset(Stack,,sizeof(Stack));
// init(n);
for(int i=;i<n;i++)
{
scanf("%d %d",&List[i].x,&List[i].y);;
}
graham(n);
double sum = ;
for(int i=; i<top; i++)
{
sum += dist(List[Stack[i]],List[Stack[i+]]);
}
sum += dist(List[Stack[]],List[Stack[top]]);
sum = sum + * pi * l;
printf("%d\n",(int)(sum+0.5));
}
}
poj-1113的更多相关文章
- 计算几何--求凸包模板--Graham算法--poj 1113
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28157 Accepted: 9401 Description ...
- poj 1113 凸包周长
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 33888 Accepted: 11544 Descriptio ...
- POJ 1113 Wall 凸包 裸
LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...
- poj 1113 Wall 凸包的应用
题目链接:poj 1113 单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...
- 【POJ 1113】Wall
http://poj.org/problem?id=1113 夏令营讲课时的求凸包例题,据说是PKUSC2015的一道题 我WA两次错在四舍五入上了(=゚ω゚)ノ #include<cmath& ...
- poj 1113 Wall
题目链接:http://poj.org/problem?id=1113 题目大意:给出点集和一个长度L,要求用最短长度的围墙把所有点集围住,并且围墙每一处距离所有点的距离最少为L,求围墙的长度. 解法 ...
- ●POJ 1113 Wall
题链: http://poj.org/problem?id=1113 题解: 计算几何,凸包 题意:修一圈围墙把给出的点包围起来,且被包围的点距离围墙的距离不能小于L,求围墙最短为多少. 答案其实就是 ...
- POJ 1113 Wall(凸包)
[题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...
- POJ 1113 Wall【凸包周长】
题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1113 Wall 求凸包
http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...
随机推荐
- HDU1007:Quoit Design——题解
http://acm.hdu.edu.cn/showproblem.php?pid=1007 题目大意:给n个点,求点对最短距离/2. —————————————————————— 平面分治裸题. 暂 ...
- LOJ6342::跳一跳——题解
https://loj.ac/problem/6342 f[i]表示从i开始跳的期望时间,f[n]=0. 所以f[i]=(f[i]+f[i+1]+……+f[n])/(n-i+1)+1. 移项整理可求f ...
- Dynamic Rankings——带修改区间第k大
三种做法:1.整体二分: 二分mid 考虑小于mid的修改的影响 但是大于mid的修改可能会干掉小于mid的一些值 所以额外把一个修改变成一个值的删除和一个值的添加 这样就相互独立了! 整体二分,树状 ...
- 【初级算法】2.买卖股票的最佳时机 II
题目: 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必 ...
- Poco::File
基于入门的环境及makefile. #include<iostream> #include<Poco/File.h> using namespace std; using na ...
- CCPC-Winter Camp div2 day8 A
---恢复内容开始--- 题目: 题解: 我们考虑第i个叶子节点的情况,根据题目给的输入条件,我们可以知道,深度大的节点的序号一定是大于深度浅的节点的序号的 如图 题目要求我们找出每一个叶子节点距离编 ...
- [python]爬站点
#!/usr/bin/python 2 import urllib 3 import urllib2 4 import re 5 import os 6 7 dirs = ['js','img','p ...
- annot refer to a non-final variable * inside an inner class defined in a different method"错误解析
在使用Java局部内部类或者匿名内部类时,若该类调用了所在方法的局部变量,则该局部变量必须使用final关键字来修饰,否则将会出现编译错误“Cannot refer to a non-final va ...
- HDU 5696 区间的价值 暴力DFS
Problem Description 我们定义"区间的价值"为一段区间的最大值*最小值. 一个区间左端点在L,右端点在R,那么该区间的长度为(R−L+1). 现在聪明的杰西想要知 ...
- Item 3 ------单例模式的几种实现方式,及优缺点
单例模式,是指一个类只有一个唯一的实例,一个类只会被实例化一次.实现这种效果,最佳的方式,编写包含单个元素的枚举类型. 单例模式的最佳实现方式-----创建一个包含单个元素的枚举类 public en ...