题目啰嗦:
支持三个操作:

不可重复集合:
1.加入一个数

2.删除一个数

3.恢复目前最早的一次删除的数

操作可能不合法,每次有效操作之后求集合的mex(最小没有出现过的数)

50组数据+1e6,必须O(N)

维护删除、恢复的数的操作可以队列维护。

数有没有在集合里可以全局bool数组记录

加入删除一个数,mex怎么维护?

考虑化简问题:
只插入?

直接mex往上走到第一个没有出现的数即可。单增,O(N)

有删除?

如果删除小的一个数,mex要跳下来,然后再恢复这个删除的数,mex又得一步一步走上去。

能不能不跳?

可以!

只要知道当前删除的数最小的一个,和mex取min即可。

维护删除的数的集合:

插入一个数,删除一个数,维护最小的数。怎么看也得带logn

但是,发现恢复数是按照时间顺序从小到大

所以一个数如果比后面的数大,那么直到这个删除的数被恢复也不可能成为最小值。

单调队列维护。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=1e6+;
const int mod=;
int ans[N];
int q[*N],l,r;
queue<int>que;
int p[N];
bool on[*N],has[*N];
namespace IO{
int c;
unsigned int seed;
unsigned int randnum(){
seed^=seed<<;
seed^=seed>>;
seed^=seed<<;
return seed;
} inline int read(int &x){scanf("%d",&x);return x;}
inline void init_case(int &m,int &a,int &b,int &d,int p[]){
scanf("%d%u%d%d%d%d",&m,&seed,&a,&b,&c,&d);
for(int i=;i<=m;i++){
if(randnum()%c==)p[i]=-;
else p[i]=randnum()%b;
}
} inline void update_ans(unsigned int &ans_sum,unsigned int cur_ans,int no){
const static unsigned int mod=;
ans_sum^=(long long)no*(no+)%mod*cur_ans%mod;
}
}
using IO::read;
using IO::init_case;
using IO::update_ans;
void clear(){
memset(on,,sizeof on);
memset(q,,sizeof q);
l=,r=;
memset(has,,sizeof has);
while(!que.empty()) que.pop();
}
int get(){
while(l<=r&&on[q[l]]) ++l;
if(l<=r) return q[l];
return 0x3f3f3f3f;
}
void upda(int c){
while(l<=r&&q[r]>=c) --r;
q[++r]=c;
}
int main(){
int T;read(T);
int m,a,b,d;
while(T--){
clear();
init_case(m,a,b,d,p); for(reg i=;i<=a;++i) on[i]=,has[i]=;
int mex=a+;
for(reg i=;i<=m;++i){
int k;
if(p[i]==-){//case 3
if(que.empty()||d){
ans[i]=;goto end;
}else{
k=que.front();que.pop();
on[k]=;
}
}else{
if(!on[p[i]]&&!has[p[i]]){
has[p[i]]=;
on[p[i]]=;
}else if(on[p[i]]){
if(d==){
ans[i]=;goto end;
}else{
que.push(p[i]);
on[p[i]]=;
upda(p[i]);
}
}else{
if(que.empty()||d){
ans[i]=;goto end;
}else{
k=que.front();que.pop();
on[k]=;
}
}
}
while(on[mex]) ++mex;
ans[i]=min(mex,get());
end:;
}
ll op=;
for(reg i=;i<=m;++i){
op^=(ll)ans[i]*((ll)i*i%mod+*i%mod)%mod;
}
printf("%lld\n",op);
}
return ;
}
}
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/12/31 16:28:17
*/

「LibreOJ NOIP Round #1」七曜圣贤的更多相关文章

  1. LibreOJ #541. 「LibreOJ NOIP Round #1」七曜圣贤(单调队列)

    被以前自己瞎YY的东西坑了T T...单调队列的确是可以维护这种操作的.... 显然这题可以转化成维护不在车上的东西的最小值, 支持插入和删去最早出现的值,然后就可以用单调队列了T T #includ ...

  2. 【LibreOJ】#541. 「LibreOJ NOIP Round #1」七曜圣贤

    [题意]一开始车上有编号为0~a的红茶,过程中出现的红茶编号仅有[0,b),有三种操作: 1.买进编号未在车上出现过的红茶. 2.丢掉车上指定编号的红茶. 3.将最早丢出去的红茶捡回来. 每次操作后求 ...

  3. LOJ#541. 「LibreOJ NOIP Round #1」七曜圣贤

    有一辆车一开始装了编号0-a的奶茶,现有m次操作,每次操作Pi在[-1,b),若Pi为一个未出现过编号的奶茶,就把他买了并装上车:若Pi为一个在车上的奶茶,则把他丢下车:否则,此次操作为捡起最早丢下去 ...

  4. 「LOJ 541」「LibreOJ NOIP Round #1」七曜圣贤

    description 题面很长,这里给出题目链接 solution 用队列维护扔掉的红茶,同时若后扔出的红茶比先扔出的红茶编号更小,那么先扔出的红茶不可能成为答案,所以可以用单调队列维护 故每次询问 ...

  5. 【LibreOJ】#538. 「LibreOJ NOIP Round #1」数列递推

    [题意]LibreOJ [算法]乱搞 [题解]容易发现数列最后一定单调,最后单调递增则最大值赋为最后一个,反之最小值赋为最后一个,然后处理一些细节就可以AC,要注意以下几点: 1.数列连续三项以及数列 ...

  6. 题解【loj537】「LibreOJ NOIP Round #1」DNA 序列

    题目描述 \(NOIP\)复赛之前\(HSD\)桑进行了一项研究,发现人某条染色体上的一段\(DNA\)序列中连续的\(k\)个碱基组成的碱基序列与做题的 \(AC\) 率有关!于是他想研究一下这种关 ...

  7. 「LOJ 537」「LibreOJ NOIP Round #1」DNA 序列

    description NOIP 复赛之前,HSD 桑进行了一项研究,发现人某条染色体上的一段 DNA 序列中连续的\(k\)个碱基组成的碱基序列与做题的 AC 率有关!于是他想研究一下这种关系. 现 ...

  8. 「LibreOJ NOIP Round #1」旅游路线

    Description T 城是一个旅游城市,具有 nnn 个景点和 mmm 条道路,所有景点编号为 1,2,...,n1,2,...,n1,2,...,n.每条道路连接这 nnn 个景区中的某两个景 ...

  9. LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)

    哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...

随机推荐

  1. Qt-QML-QML调用C++类

    QML用来做界面,在不考虑数据的请款下,那是溜溜的,但是,程序是没有不和后台数据交互的,但是了,QML在数据处理方面的效率又是不敢恭维的,这里就出现了QML负责前端界面,而后端使用JS或者C++了. ...

  2. 180611-Spring之RedisTemplate配置与使用

        logo 文章链接:https://liuyueyi.github.io/hexblog/2018/06/11/180611-Spring之RedisTemplate配置与使用/ Spring ...

  3. .NET MVC和.NET WEB api混用时注意事项

    1.同时配置了mvc路由和api路由时,mvc路由无法访问(调用所有mvc路由全部404错误) 在Global.asax中,需注意路由注册的顺序,将api路由注册放在最后: 即将 void Appli ...

  4. JAVA基础学习之路(七)对象数组的定义及使用

    两种定义方式: 1.动态初始化: 定义并开辟数组:类名称 对象数组名[] = new 类名称[长度] 分布按成:类名称 对象数组名[] = null: 对象数组名 = new 类名称[长度]:   2 ...

  5. The Activation Function in Deep Learning 浅谈深度学习中的激活函数

    原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...

  6. LeetCode - 326, 342, 231 Power of Three, Four, and Two

    1. 问题 231. Power of Two: 判断一个整数是否是2的n次方,其中n是非负整数 342. Power of Four: 判断一个整数是否是4的n次方,其中n是非负整数 326. Po ...

  7. ThinkPHP - 1 - 本地部署

    ThinkPHP ThinkPHP是一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架,遵循Apache2开源协议发布,从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时 ...

  8. JS原型与面向对象总结

    ECMAScript有两种开发模式:1.函数式(过程化),2.面向对象(OOP).面向对象的语言有一个标志,那就是类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但 是,ECMAScrip ...

  9. Java学习个人备忘录之面向对象概念

    对象,其实就是该类事物实实在在存在的个体. 类与对象之间的关系?类:一类事物的描述.对象:该类事物的实例.在java中通过new来创建的.举例来说,类就是汽车说明书,类只能在理论上造一辆汽车,并且这个 ...

  10. c++SDK c#调用_疑难杂症

    在编写过程中,会不时遇到各种问题: 1.dll明显在和exe同一目录下但调用不成功, 2.运行正常,没有报错,参数数值运行过程中也一致,但结果就是达不到预想, 都是dll没有引用完全造成的影响. 推荐 ...