Given a string containing just the characters'('and')', find the length of the longest valid (well-formed) parentheses substring.

For"(()", the longest valid parentheses substring is"()", which has length = 2.

Another example is")()())", where the longest valid parentheses substring is"()()", which has length = 4.

题意:找到字符串中,最大的有效括号数

思路:这题是valid parentheses的扩展,也可以利用栈结构来实现。这里我们用栈存放左括号的下标,遇到左括号,将其下标存入栈中。遇到右括号,若此时栈为空,说明这个不是有效括号对里的,跳过,更新有效括号的起始点;若是栈不为空,则栈顶元素出栈。此时,若栈为空,后面不一定没有接合法的有效括号对,所以,计算当前和有效括号起始点的距离,并更新最大值,如:()();若不为空,用当前位置距离栈顶元素的距离和maxlen中的最大值更新maxlen,如:()(()()。参考了Grandyang的博客。代码如下:

 class Solution {
public:
int longestValidParentheses(string s)
{
stack<int> stk;
int start=,maxLen=;
for(int i=;i<s.size();++i)
{
if(s[i]=='(')
stk.push(i);
else
{
if(stk.empty())
start=i+;
else
{
stk.pop();
if(stk.empty())
maxLen=max(maxLen,i-start+);
else
maxLen=max(maxLen,i-stk.top());
}
}
}
return maxLen; }
};

这题还能使用动态规划的方式解:

dp[i]为到i处最长的有效括号,如果s[i]为左括号,则dp[i]为0,因为若字符串是以左括号结束,则不可能为有效的;若是为右括号,有两种情况:

一:其前者s[i-1]为左括号,所以dp[i]=dp[i-2]+2;

二、s[i-1]为右括号且s[i-dp[i-1]-1]为左括号,所以 dp[i] = dp[i-1] + 2 + dp[i-dp[i-1]-2],其中i-dp[i-1]-1对应对应最长括号的起始点

LeetCode OJ代码如下:

 class Solution {
public:
int longestValidParentheses(string s)
{
if(s.size()<=) return ;
int maxLen=;
vector<int> dp(s.size(),);
for(int i=;i<s.size();++i)
{
if(s[i]==')'&&i-dp[i-]->=&&s[i-dp[i-]-]=='(')
{
dp[i]=dp[i-]++((i-dp[i-]->=)?dp[i-dp[i-]-]:);
maxLen=max(dp[i],maxLen);
}
}
return maxLen; }
};

[Leetcode] longest valid parentheses 最长的有效括号的更多相关文章

  1. [LeetCode] Longest Valid Parentheses 最长有效括号

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  2. [LeetCode] 32. Longest Valid Parentheses 最长有效括号

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  3. [leetcode]32. Longest Valid Parentheses最长合法括号子串

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  4. [LeetCode] Longest Valid Parentheses 解题思路

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  5. [LeetCode] Longest Valid Parentheses 动态规划

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  6. [LeetCode] Longest Valid Parentheses

    第一种方法,用栈实现,最容易想到,也比较容易实现,每次碰到‘)’时update max_len,由于要保存之前的‘(’的index,所以space complexity 是O(n) // 使用栈,时间 ...

  7. LeetCode: Longest Valid Parentheses 解题报告

    Longest Valid Parentheses Given a string containing just the characters '(' and ')', find the length ...

  8. [LeetCode] Longest Valid Parentheses -- 挂动态规划羊头卖stack的狗肉

    (Version 1.3) 这题在LeetCode上的标签比较有欺骗性,虽然标签写着有DP,但是实际上根本不需要使用动态规划,相反的,使用动态规划反而会在LeetCode OJ上面超时.这题正确的做法 ...

  9. leetcode: Longest Valid Parentheses分析和实现

    题目大意:给出一个只包含字符'('和')'的字符串S,求最长有效括号序列的长度. 很有趣的题目,有助于我们对这种人类自身制定的规则的深入理解,可能我们大多数人都从没有真正理解过怎样一个括号序列是有效的 ...

随机推荐

  1. centos7下安装mysql8.0.12及设置权限

    一.mysql版本介绍 mysql的官网为:https://www.mysql.com/ 在官网上可以看到多个版本,主要版本如下, 1.MySQL Community Server 社区版本,开源免费 ...

  2. unity面试题一

    一:什么是协同程序? 在主线程运行的同时开启另一段逻辑处理,来协助当前程序的执行,协程很像多线程,但是不是多线程,Unity的协程实在每帧结束之后去检测yield的条件是否满足. 二:Unity3d中 ...

  3. javaweb(六)——Servlet开发(二)

    一.ServletConfig讲解 1.1.配置Servlet初始化参数 在Servlet的配置文件web.xml中,可以使用一个或多个<init-param>标签为servlet配置一些 ...

  4. .net backend return json string , used by frontend

    伪代码: backend: public string GetJson() { var lst = xxxLst; var obj = Json(lst);return new JavaScriptS ...

  5. Oracle 字段拆分替换在合并成一条

    看了网上很多Oracle字段拆分的实例,但是都未能完全满足要求,或许是我水平不够未能很好的理解,如果有大神懂得并且愿意告知我的,可以私信我,在这里真诚的感谢! 1. 首先建立表并插入测试数据 drop ...

  6. VIN码识别:让VIN码采集so easy!

    近几年汽车后市场呈喷井式发展,在过去的半年,汽车后市场规模已高达万亿级,产业前景广阔,与此同时行业运营也受信息区域化.数据不统一的制约,让企业面临着效率低下.规模化运行困难的痛点. 在汽车配件市场中, ...

  7. Linux命令应用大词典-第29章 SELinux管理

    29.1 sestaus:显示SElinux的状态 29.2 getenforce:显示当前SELinux的应用模式 29.3 setenforce:修改SELinux的应用模式 29.4 getfa ...

  8. Pyhton网络爬虫实例_豆瓣电影排行榜_Xpath方法爬取

    -----------------------------------------------------------学无止境------------------------------------- ...

  9. spark-shell解析

    spark-shell 作用: 调用spark-submit脚本,如下参数 --classorg.apache.spark.repl.Main --name "Spark shell&quo ...

  10. 《剑指Offer》题三十一~题四十

    三十一.栈的压入.弹出序列 题目:输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的数字均不相等.例如,序列{1, 2, 3, 4 ,5}是某栈的压栈序列 ...