洛谷P4135 作诗 (分块)
洛谷P4135 作诗
题目描述
神犇SJY虐完HEOI之后给傻×LYD出了一题:
SHY是T国的公主,平时的一大爱好是作诗。
由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次,每次只阅读其中连续的一段[l,r],从这一段中选出一些汉字构成诗。因为SHY喜欢对偶,所以SHY规定最后选出的每个汉字都必须在[l,r]里出现了正偶数次。而且SHY认为选出的汉字的种类数(两个一样的汉字称为同一种)越多越好(为了拿到更多的素材!)。于是SHY请LYD安排选法。
LYD这种傻×当然不会了,于是向你请教……
问题简述:N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次。
输入输出格式
输入格式:
输入第一行三个整数n、c以及m。表示文章字数、汉字的种类数、要选择M次。
第二行有n个整数,每个数Ai在[1, c]间,代表一个编码为Ai的汉字。
接下来m行每行两个整数l和r,设上一个询问的答案为ans(第一个询问时ans=0),令L=(l+ans)mod n+1, R=(r+ans)mod n+1,若L>R,交换L和R,则本次询问为[L,R]。
输出格式:
输出共m行,每行一个整数,第i个数表示SHY第i次能选出的汉字的最多种类数。
输入输出样例
输入样例#1:
5 3 5
1 2 2 3 1
0 4
1 2
2 2
2 3
3 5
输出样例#1:
2
0
0
0
1
说明
对于100%的数据,1<=n,c,m<=10^5
Solution
貌似没有暴力分...
而且还卡时...十分恶心..必须要开\(O(2)...\)
无fuck说...
还是分块
其实这道题难得就是预处理,基本上会预处理就应该会查询了
那么怎么做到\(O(n\sqrt n)\)呢?
我们需要两个桶,一个sum[i][j]表示从块i到块j满足条件的个数,num[i][j]表示块1~块i内j的个数,然后做个前缀和
对于[l,r],如果区间长度小于\(\sqrt n\),我们暴力求解
否则暴力处理两边不完整的块,中间的\(O(1)\)查询(因为我们做了前缀和)
预处理num[][]数组
for(rg int i=1;i<=n;i++) {
in(v[i]),pos[i]=(i-1)/blo+1;
num[pos[i]][v[i]]++;
}
for(rg int i=1;i<=c;i++)
for(int j=1;j<=pos[n];j++)
num[j][i]+=num[j-1][i];
预处理sum[][]数组
for(rg int i=1,cnt=0;i<=pos[n];i++,cnt=0) {
for(rg int j=(i-1)*blo+1;j<=n;j++) {
++AQ[v[j]];
if(AQ[v[j]]%2==0) ++cnt;
else if(AQ[v[j]]>2) --cnt;
sum[i][pos[j]]=cnt;
}
for(rg int j=(i-1)*blo+1;j<=n;j++) --AQ[v[j]];
}
Code
#include<bits/stdc++.h>
#define rg register
#define lol long long
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b)
#define in(i) (i=read())
using namespace std;
const int N=1e5+10;
int read() {
int ans=0,f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
return ans*f;
}
int n,c,m,blo;
int sum[330][330],num[330][N],v[N],pos[N],AQ[N];
int query(int a,int b,int ans=0) {
rg int l=pos[a],r=pos[b];
if(l==r) {
for(rg int j=a;j<=b;j++) {
++AQ[v[j]];
if(AQ[v[j]]%2==0) ans++;
else if(AQ[v[j]]>2) ans--;
}
for(rg int j=a;j<=b;j++) --AQ[v[j]];
return ans;
}
for(rg int i=a;i<=l*blo;i++) {
++AQ[v[i]];
if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])%2==0) ++ans;
else if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])>2) --ans;
}
for(rg int i=(r-1)*blo+1;i<=b;i++) {
++AQ[v[i]];
if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])%2==0) ++ans;
else if((AQ[v[i]]+num[r-1][v[i]]-num[l][v[i]])>2) --ans;
}
for(rg int i=a;i<=l*blo;i++) --AQ[v[i]];
for(rg int i=(r-1)*blo+1;i<=b;i++) --AQ[v[i]];
ans+=sum[l+1][r-1]; return ans;
}
void print(int x) {
if(x>9) print(x/10);
putchar(x%10+'0');
}
int main() {
in(n),in(c),in(m); blo=sqrt(n);
for(rg int i=1;i<=n;i++) {
in(v[i]),pos[i]=(i-1)/blo+1;
num[pos[i]][v[i]]++;
}
for(rg int i=1;i<=c;i++)
for(int j=1;j<=pos[n];j++)
num[j][i]+=num[j-1][i];
for(rg int i=1,cnt=0;i<=pos[n];i++,cnt=0) {
for(rg int j=(i-1)*blo+1;j<=n;j++) {
++AQ[v[j]];
if(AQ[v[j]]%2==0) ++cnt;
else if(AQ[v[j]]>2) --cnt;
sum[i][pos[j]]=cnt;
}
for(rg int j=(i-1)*blo+1;j<=n;j++) --AQ[v[j]];
}
for(rg int i=1,ans=0;i<=m;i++) {
int l,r; in(l),in(r);
l=(l+ans)%n+1,r=(r+ans)%n+1;
if(l>r) swap(l,r);
print(ans=query(l,r)),putchar('\n');
}
}
博主蒟蒻,随意转载.但必须附上原文链接
http://www.cnblogs.com/real-l/
洛谷P4135 作诗 (分块)的更多相关文章
- 洛谷 P4135 作诗 题解
题面. 之前做过一道很类似的题目 洛谷P4168蒲公英 ,然后看到这题很快就想到了解法,做完这题可以对比一下,真的很像. 题目要求区间内出现次数为正偶数的数字的数量. 数据范围1e5,可以分块. 我们 ...
- 洛谷 P4135 作诗(分块)
题目链接 题意:\(n\) 个数,每个数都在 \([1,c]\) 中,\(m\) 次询问,每次问在 \([l,r]\) 中有多少个数出现偶数次.强制在线. \(1 \leq n,m,c \leq 10 ...
- 洛谷P4135 作诗(不一样的分块)
题面 给定一个长度为 n n n 的整数序列 A A A ,序列中每个数在 [ 1 , c ] [1,c] [1,c] 范围内.有 m m m 次询问,每次询问查询一个区间 [ l , r ] [l, ...
- 洛谷P4135 作诗
题意:[l,r]之间有多少个数出现了正偶数次.强制在线. 解:第一眼想到莫队,然后发现强制在线...分块吧. 有个很朴素的想法就是蒲公英那题的套路,做每块前缀和的桶. 然后发现这题空间128M,数组大 ...
- 洛谷 P4135 作诗
分块大暴力,跟区间众数基本一样 #pragma GCC optimize(3) #include<cstdio> #include<algorithm> #include< ...
- P4135 作诗——分块
题目:https://www.luogu.org/problemnew/show/P4135 分块大法: 块之间记录答案,每一块记录次数前缀和: 注意每次把桶中需要用到位置赋值就好了: 为什么加了特判 ...
- 洛谷P4198 楼房重建 (分块)
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...
- 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]
洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...
- 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解
题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...
随机推荐
- Java开发工程师(Web方向) - 04.Spring框架 - 第2章.IoC容器
第2章.IoC容器 IoC容器概述 abstract: 介绍IoC和bean的用处和使用 IoC容器处于整个Spring框架中比较核心的位置:Core Container: Beans, Core, ...
- HDU-1496(哈希表)
Hash入门第一题 题意: 问题描述 考虑具有以下形式的方程: a * x1 ^ 2 + b * x2 ^ 2 + c * x3 ^ 2 + d * x4 ^ 2 = 0 a,b,c,d是来自区间[- ...
- (原) MaterialEditor部- UmateriaEditor中 Node编译过程和使用(1)
@author: 白袍小道 转载说明原处 插件同步在GITHUB: DaoZhang_XDZ 最后YY需求(手滑) 1.在理清楚基础套路和细节后,自定义纹理资源,并加入到现有UE材质系统 2. ...
- python图片大小处理;
循环一个目录将下面的所有png或者jpg文件全部缩小一定比例: from PIL import Image import os,re work_dir = 'C:\\Users\\Admini ...
- 两种缓存淘汰算法LFU&LRU
LRU全称是Least Recently Used,即最近最久未使用的意思. LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已 ...
- [模板]非递归线段树(zkw的变异版本)
类似于zkw,但空间只用两倍,zkw要4倍. 链接 可以下传标记,打熟后很好码. #include <set> #include <cmath> #include <cs ...
- LeetCode 386——字典序的第 K 小数字
1. 题目 2. 解答 字典序排数可以看做是第一层节点分别为 1-9 的十叉树,然后我们在树上找到第 K 小的数字即可.因此,我们需要分别统计以 1-9 为根节点的每个树的节点个数.如果 K 小于当前 ...
- alpha-4
前言 失心疯病源4 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 今天完成了那些任务 19:00~21:50 利用背景相减法完成背景构建与更新模块,查找关于blob更多的论文资 ...
- TCP/IP 三次握手四次挥手
TCP运输连接 TCP连接建立过程中要解决以下三个问题: (1)要使每一方能够确知双方的存在. (2)要允许双方协商一些参数(如最大窗口值.是否使用窗口扩大选项和时间戳选项以及服务质量等). (3)能 ...
- LintCode-378.将二叉查找树转换成双链表
将二叉查找树转换成双链表 将一个二叉查找树按照中序遍历转换成双向链表. 样例 给定一个二叉查找树: 返回 1<->2<->3<->4<->5. 标签 链 ...