Java编程MapReduce实现WordCount

1.编写Mapper

package net.toocruel.yarn.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException;
import java.util.StringTokenizer; /**
* @author : 宋同煜
* @version : 1.0
* @createTime : 2017/4/12 14:15
* @description :
*/
public class WordCountMapper extends Mapper<Object,Text,Text,IntWritable>{ //对于每个单词赋予出现频数1,因为单词是一个一个取出来的,所以每个数量都为1
private final static IntWritable one = new IntWritable(1);
//存储取出来的一行单词
private Text word = new Text(); @Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
//StringTokenizer 对输入单词进行切分
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens())
{
word.set(itr.nextToken());
context.write(word, one);
}
}
}
123456789101112131415161718192021222324252627282930313233

2.编写Reducer

package net.toocruel.yarn.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; /**
* @author : 宋同煜
* @version : 1.0
* @createTime : 2017/4/12 14:16
* @description :
*/
public class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{ //存取对应单词总频数
private IntWritable result = new IntWritable(); @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//计算频数
int sum = 0;
for(IntWritable value:values){
sum+=value.get();
}
result.set(sum);
//写入输出
context.write(key, result);
}
}
12345678910111213141516171819202122232425262728293031

3.编写Job提交器

package net.toocruel.yarn.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* wordcount 提交器 打包在hadoop集群任意机器执行 hadoop jar XXX.jar net.toocruel.yarn.mapreduce.wordcount WordCount
* @author : 宋同煜
* @version : 1.0
* @createTime : 2017/4/12 14:15
* @description :
*/
public class WordCount {
public static void main(String[] args)throws Exception {
//初始化配置
Configuration conf = new Configuration();
System.setProperty("HADOOP_USER_NAME","hdfs");
//创建一个job提交器对象
Job job = Job.getInstance(conf);
job.setJobName("WordCount");
job.setJarByClass(WordCount.class); //设置map,reduce处理
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); //设置输出格式处理类
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); //设置输入输出路径
FileSystem.get(new Configuration()).delete(new Path("/sty/wordcount/output")); //先清空输出目录
FileInputFormat.addInputPath(job, new Path("hdfs://cloudera:8020/sty/wordcount/input"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://cloudera:8020/sty/wordcount/output")); boolean res = job.waitForCompletion(true);
System.out.println("任务名称: "+job.getJobName());
System.out.println("任务成功: "+(res?"Yes":"No"));
System.exit(res?0:1);
}
}
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

4.打包

我用的maven打包,也可以Eclipse的直接导出jar包或Idea的build artifacts

hadoopSimple-1.0.jar

5.运行

在Yarn的ResourceManager 或NodeManager节点机器上运行

hadoop jar hadoopSimple-1.0.jar  net.toocruel.yarn.mapreduce.wordcount.WordCount

6.运行结果

[root@cloudera ~]# hadoop jar hadoopSimple-1.0.jar  net.toocruel.yarn.mapreduce.wordcount.WordCount
17/04/13 12:57:13 INFO client.RMProxy: Connecting to ResourceManager at cloudera/192.168.254.203:8032
17/04/13 12:57:14 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/04/13 12:57:18 INFO input.FileInputFormat: Total input paths to process : 1
17/04/13 12:57:18 INFO mapreduce.JobSubmitter: number of splits:1
17/04/13 12:57:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1491999347093_0012
17/04/13 12:57:19 INFO impl.YarnClientImpl: Submitted application application_1491999347093_0012
17/04/13 12:57:19 INFO mapreduce.Job: The url to track the job: http://cloudera:8088/proxy/application_1491999347093_0012/
17/04/13 12:57:19 INFO mapreduce.Job: Running job: job_1491999347093_0012
17/04/13 12:57:32 INFO mapreduce.Job: Job job_1491999347093_0012 running in uber mode : false
17/04/13 12:57:32 INFO mapreduce.Job: map 0% reduce 0%
17/04/13 12:57:39 INFO mapreduce.Job: map 100% reduce 0%
17/04/13 12:57:47 INFO mapreduce.Job: map 100% reduce 33%
17/04/13 12:57:49 INFO mapreduce.Job: map 100% reduce 67%
17/04/13 12:57:53 INFO mapreduce.Job: map 100% reduce 100%
17/04/13 12:57:54 INFO mapreduce.Job: Job job_1491999347093_0012 completed successfully
17/04/13 12:57:54 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=162
FILE: Number of bytes written=497579
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=233
HDFS: Number of bytes written=62
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=6
Job Counters
Launched map tasks=1
Launched reduce tasks=3
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=5167
Total time spent by all reduces in occupied slots (ms)=18520
Total time spent by all map tasks (ms)=5167
Total time spent by all reduce tasks (ms)=18520
Total vcore-seconds taken by all map tasks=5167
Total vcore-seconds taken by all reduce tasks=18520
Total megabyte-seconds taken by all map tasks=5291008
Total megabyte-seconds taken by all reduce tasks=18964480
Map-Reduce Framework
Map input records=19
Map output records=18
Map output bytes=193
Map output materialized bytes=150
Input split bytes=111
Combine input records=0
Combine output records=0
Reduce input groups=7
Reduce shuffle bytes=150
Reduce input records=18
Reduce output records=7
Spilled Records=36
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=320
CPU time spent (ms)=4280
Physical memory (bytes) snapshot=805298176
Virtual memory (bytes) snapshot=11053834240
Total committed heap usage (bytes)=529731584
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=122
File Output Format Counters
Bytes Written=62
任务名称: WordCount
任务成功: Yes

Java编程MapReduce实现WordCount的更多相关文章

  1. Hadoop学习笔记: MapReduce Java编程简介

    概述 本文主要基于Hadoop 1.0.0后推出的新Java API为例介绍MapReduce的Java编程模型.新旧API主要区别在于新API(org.apache.hadoop.mapreduce ...

  2. Java编程手冊-Collection框架(下)

    建议先看Java编程手冊-Collection框架(上) 5.  Set<E>接口与实现 Set<E>接口表示一个数学的集合,它不同意元素的反复,仅仅能包括一个null元素. ...

  3. eclipse运行mapreduce的wordcount

    1,eclipse安装hadoop插件 插件下载地址:链接: https://pan.baidu.com/s/1U4_6kLFNiKeLsGfO7ahXew 提取码: as9e 下载hadoop-ec ...

  4. JAVA编程思想(第四版)学习笔记----4.8 switch(知识点已更新)

    switch语句和if-else语句不同,switch语句可以有多个可能的执行路径.在第四版java编程思想介绍switch语句的语法格式时写到: switch (integral-selector) ...

  5. 《Java编程思想》学习笔记(二)——类加载及执行顺序

    <Java编程思想>学习笔记(二)--类加载及执行顺序 (这是很久之前写的,保存在印象笔记上,今天写在博客上.) 今天看Java编程思想,看到这样一道代码 //: OrderOfIniti ...

  6. #Java编程思想笔记(一)——static

    Java编程思想笔记(一)--static 看<Java编程思想>已经有一段时间了,一直以来都把笔记做在印象笔记上,今天开始写博客来记录. 第一篇笔记来写static关键字. static ...

  7. [Java编程思想-学习笔记]第3章 操作符

    3.1  更简单的打印语句 学习编程语言的通许遇到的第一个程序无非打印"Hello, world"了,然而在Java中要写成 System.out.println("He ...

  8. Java编程思想重点笔记(Java开发必看)

    Java编程思想重点笔记(Java开发必看)   Java编程思想,Java学习必读经典,不管是初学者还是大牛都值得一读,这里总结书中的重点知识,这些知识不仅经常出现在各大知名公司的笔试面试过程中,而 ...

  9. JAVA编程讲座-吴老

    JAVA系列公开课第4讲:多态系列课程:从JAVA编程零基础讲起,同时结合工作中遇到的具体实例,语言清晰易懂,连续10周+深入讲解,打下编程基础,让我们一起打来自动化测试的大门时间:4月25日(周一) ...

随机推荐

  1. 流畅的python(笔记)

    流畅的python中有很多奇技淫巧,整本书都在强调如何最大限度地利用Python 标准库.介绍了很多python的不常用的数据类型.操作.库等,对于入门python后想要提升对python的认识应该有 ...

  2. [JSON].remove( keyPath )

    语法:[JSON].remove( keyPath ) 返回:无 说明:移除指定路径的键 示例: Set jsonObj = toJson("{div:{'#text-1': 'is tex ...

  3. [Clr via C#读书笔记]Cp8方法

    Cp8方法 构造器 作用就是初始化所有成员字段:.ctor:派生类和基类都有自己的构造函数.默认有一个无参数的构造函数,值字段初始化为0,引用字段初始化为null:可以有多个构造器: 值类型的初始化其 ...

  4. 性能度量之Confusion Matrix

    例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features ...

  5. anaconda安装scrapy报错解决办法

    今天在用anaconda安装scrapy的时候遇见个坑,现在将解决办法发出来,供大家参考使用: 问题描述: anaconda安装scrapy,使用 conda install scrapy 命令.安装 ...

  6. POJ 3675 Telescope(简单多边形和圆的面积交)

    Description Updog is watching a plane object with a telescope. The field of vision in the telescope ...

  7. SGU 520 Fire in the Country(博弈+搜索)

    Description This summer's heat wave and drought unleashed devastating wildfires all across the Earth ...

  8. PHP 将一个字符串部分字符用$re替代隐藏

    <?php/** * 将一个字符串部分字符用$re替代隐藏 * @param string $string 待处理的字符串 * @param int $start 规定在字符串的何处开始, * ...

  9. mysql 复杂查询

    1.同一个表下多次查询: sql语句: select b.* ,(select name from exh_common.medicine_type a where b.p_id = a.id) as ...

  10. 转 高性能IO模型浅析

    高性能IO模型浅析 转自:http://www.cnblogs.com/fanzhidongyzby/p/4098546.html 服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种: ( ...