1833: [ZJOI2010]count 数字计数

Time Limit: 3 Sec  Memory Limit: 64 MB
Submit:
2494  Solved: 1101
[Submit][Status][Discuss]

Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

1 99

Sample Output

9 20 20 20 20 20 20 20 20
20

HINT

30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。

Source

Day1

Solution

裸的数位DP,但其实并不是特别的水

首先F[i][j][k]表示位数为i的最高位为j的k种数的个数

按照十进制拆分,预处理后统计答案

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
long long L,R;
long long F[][][],ans1[],ans2[];
void prework()
{
for (int i=; i<=; i++) F[][i][i]=;
long long tmp=;
for (int i=; i<=; i++)
{
tmp*=;
F[i][][]=F[i-][][]*+F[i-][][]+tmp;
for (int j=; j<=; j++)
F[i][][j]=F[i-][][j]*+F[i-][j][j];
for (int j=; j<=; j++)
{
F[i][j][]=F[i-][][]*+F[i-][][];
for (int k=; k<=; k++)
if (j==k)
F[i][j][k]=F[i-][][k]*+F[i-][k][k]+tmp;
else
F[i][j][k]=F[i-][][k]*+F[i-][k][k];
}
}
}
long long cf(int x)
{
long long re=;
for (int i=; i<x; i++)
re*=;
return re;
}
void Calc(long long x,long long *ans)
{
int digit[]={},len=; long long y=x;
while (x) {digit[++len]=x%; x/=;}
for (int i=; i<len; i++)
for (int j=; j<=; j++)
for (int k=; k<=; k++)
ans[k]+=F[i][j][k];
for (int i=len; i>=; i--)
{
for (int j=; j<=digit[i]-; j++)
{
if (i==len && j==) continue;
for (int k=; k<=; k++) ans[k]+=F[i][j][k];
}
ans[digit[i]]+=y%cf(i)+;
}
}
int main()
{
prework();
scanf("%lld%lld",&L,&R);
Calc(L-,ans1); Calc(R,ans2);
printf("%lld",ans2[]-ans1[]);
for (int i=; i<=; i++) printf(" %lld",ans2[i]-ans1[i]);
return ;
}

自己一开始YY的出错了..

【BZOJ-1833】count数字计数 数位DP的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  3. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  4. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  5. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  6. BZOJ 1833 count 数字计数

    sb数位dp. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...

  7. BZOJ 1833 ZJOI2010 count 数字计数 数位DP

    题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...

  8. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

  9. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

随机推荐

  1. Java核心技术点之动态代理

    本篇博文会从代理的概念出发,介绍Java中动态代理技术的使用,并进一步探索它的实现原理.由于个人水平有限,叙述中难免出现不清晰或是不准确的地方,希望大家可以指正,谢谢大家:) 一.概述 1. 什么是代 ...

  2. 笔记 (note)

    笔记[问题描述]给定一个长度为m的序列a,下标编号为1~m.序列的每个元素都是1~n的整数.定义序列的代价为m−1 ∑|ai+1-ai| i=1 你现在可以选择两个数x和y,并将序列a中所有的x改成y ...

  3. codevs 2606 约数和问题

    题目描述 Description Smart最近沉迷于对约数的研究中. 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X) ...

  4. JPA 教程

    Entities An entity is a lightweight persistence domain object. Typically an entity represents a tabl ...

  5. druid 数据源 使用属性文件的一个坑

    直接上代码: <bean id="propertiesFactoryBean" class="org.springframework.beans.factory.c ...

  6. intellij idea 高级用法之:集成JIRA、UML类图插件、集成SSH、集成FTP、Database管理

    之前写过一篇IntelliJ IDEA 13试用手记,idea还有很多高大上的功能,易用性几乎能与vs.net媲美,反正我自从改用idea后,再也没开过eclipse,今天来看几个高级功能: 一.与J ...

  7. 使用Netty绑定一个端口如何分辨出多种类型的DTU的注册包

    一.  背景 项目需要使用Netty和DTU(无线数据传输模块)通信,需要接入多种类型的DTU,每种dtu连接上来之后都首先会发送一个注册报文.需要解析该注册报文来实现: 1. 分辨出是哪种类型的dt ...

  8. unix环境高级编程基础知识之第一篇

    陆陆续续看完了圣经第一章,熟悉了unix的整个编程流程,c语言的用处在这里得到伸张. 从unix的体系结构,原来操作系统包括内核及一些其他软件,我们常常误称为linux内核为操作系统,这俨然成为一种共 ...

  9. Tomcat 内存溢出对应解决方式

    1.Tomcat内存溢出的原因 生产环境中Tomcat内存设置不好很容易出现内存溢出.造成内存溢出是不一样的,当然处理方式也不一样. 这里根据平时遇到的情况和相关资料进行一个总结.常见的一般会有下面三 ...

  10. 如何使用 UC浏览器开发者版 进行移动端调试

    在 如何用 fiddler 代理调试本地手机页 一文中我们了解了如何用手机查看 PC 端写的网页(本地),但是我们只能看到页面效果,如果哪段 js 挂了,那部分样式失效了,我们该如何进行调试呢?今天为 ...