Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成
两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将
所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在
关于s,t的割中容量最小的割。
而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把
视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)
2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。
 

Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000
 

Output

输出文件第一行为一个整数,表示个数。

 

Sample Input

4 4
1 2 3
1 3 6
2 4 5
3 4 4

Sample Output

3
 
经典的分治最小割问题,有这样一个结论:最小割最多有n-1个,这n-1个最小割构成一个最小割树(可见2016国家队论文)
大意是每次任取一个源汇求出最小割,然后分治S割和T割的节点,时间复杂度为N*O(最小割)。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=910;
const int maxm=20010;
struct Dinic {
struct Edge {int from,to,flow;}edges[maxm];
int n,m,s,t,first[maxn],next[maxm];
int d[maxn],vis[maxn],cur[maxn];
void init(int n) {
this->n=n;m=0;
memset(first,-1,sizeof(first));
}
void AddEdge(int u,int v,int w) {
edges[m]=(Edge){u,v,w};next[m]=first[u];first[u]=m++;
edges[m]=(Edge){v,u,w};next[m]=first[v];first[v]=m++;
}
void reset() {rep(i,0,m-1) edges[i].flow=edges[i^1].flow=(edges[i].flow+edges[i^1].flow)>>1;}
int Q[maxn],clo;
int BFS() {
int l=1,r=0;Q[++r]=s;vis[s]=++clo;
while(l<=r) {
int x=Q[l++];cur[x]=first[x];
ren {
Edge& e=edges[i];
if(e.flow&&vis[e.to]!=clo) {
vis[e.to]=clo;
d[e.to]=d[x]+1;
Q[++r]=e.to;
}
}
}
return vis[t]==clo;
}
int DFS(int x,int a) {
if(x==t||!a) return a;
int flow=0,f;
for(int& i=cur[x];i!=-1;i=next[i]) {
Edge& e=edges[i];
if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.flow)))) {
e.flow-=f;edges[i^1].flow+=f;
flow+=f;a-=f;if(!a) break;
}
}
return flow;
}
int solve(int s,int t) {
this->s=s;this->t=t;int flow=0;
while(BFS()) flow+=DFS(s,1e9);
return flow;
}
}sol;
int cnt,A[maxn],tmp[maxn],ans[maxm];
void solve(int l,int r) {
if(l>=r) return;sol.reset();
ans[++cnt]=sol.solve(A[l],A[r]);
int L=l,R=r;
rep(i,l,r) {
if(sol.vis[A[i]]==sol.clo) tmp[L++]=A[i];
else tmp[R--]=A[i];
}
rep(i,l,r) A[i]=tmp[i];
solve(l,R);solve(L,r);
}
int main() {
int n=read(),m=read();sol.init(n);
rep(i,1,m) {
int a=read(),b=read(),c=read();
sol.AddEdge(a,b,c);
}
rep(i,1,n) A[i]=i;solve(1,n);
sort(ans+1,ans+cnt+1);
int res=1;
rep(i,2,cnt) if(ans[i]!=ans[i-1]) res++;
printf("%d\n",res);
return 0;
}

  

BZOJ4519: [Cqoi2016]不同的最小割的更多相关文章

  1. bzoj千题计划140:bzoj4519: [Cqoi2016]不同的最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=4519 最小割树 #include<queue> #include<cstdio&g ...

  2. bzoj4519: [Cqoi2016]不同的最小割(分治最小割)

    4519: [Cqoi2016]不同的最小割 题目:传送门 题解: 同BZOJ 2229 基本一样的题目啊,就最后用set记录一下就ok 代码: #include<cstdio> #inc ...

  3. [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树

    不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...

  4. BZOJ4519 CQOI2016不同的最小割(最小割+分治)

    最小割树:新建一个图,包含原图的所有点,初始没有边.任取两点跑最小割,给两点连上权值为最小割的边,之后对于两个割集分别做同样的操作.最后会形成一棵树,树上两点间路径的最小值即为两点最小割.证明一点都不 ...

  5. BZOJ4519——[cqoi2016]不同的最小割

    0.题意:求两点之间的最小割的不同的总量 1.分析:裸的分治+最小割,也叫最小割树或GH树,最后用set搞一下就好 #include <set> #include <queue> ...

  6. BZOJ4519[Cqoi2016]不同的最小割——最小割树+map

    题目描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将 所有顶点处在 ...

  7. bzoj4519: [Cqoi2016]不同的最小割(最小割树)

    传送门 好神仙……最小割树是个什么东西…… 其实我觉得干脆直接$O(n^2)$跑几个dinic算了…… 来说一下这个叫最小割树的神奇东西 我们先建一个$n$个点,没有边的无向图 在原图中任选两点$s, ...

  8. 【BZOJ4519】[Cqoi2016]不同的最小割 最小割树

    [BZOJ4519][Cqoi2016]不同的最小割 Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分 ...

  9. 【BZOJ-4519】不同的最小割 最小割树(分治+最小割)

    4519: [Cqoi2016]不同的最小割 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 393  Solved: 239[Submit][Stat ...

随机推荐

  1. mac os x使用技巧及常用软件

    常见键盘符号:⌘(command).⌥(option).⇧(shift).⇪(caps lock).⌃(control) 常用快捷键 复制  Command+c / Option+拖拽 粘贴  Com ...

  2. c++ 调用dll

    1.首先写一个dll程序并且输出成dll. 新建win32项目,然后在应用程序类型中选择dll. HelloDll.h: #pragma once #ifndef MYDLL_API_EXPORTS ...

  3. IBM Rational AppScan 无法记录登录序列 分类: 数据安全 2015-03-18 16:46 158人阅读 评论(0) 收藏

    为了测试漏洞,我在本地部署了一个站点,为http://localhost/app,并且有登录页面. 但是尝试多次,都无法记录登录页面.此时尝试了在hosts文件中,自定义了一个域名 127.0.0.1 ...

  4. SimpleHashTable

    简单的Hash Table 实现,下次被问到,至少不是从0开始.不过笔试问这个毕竟不多. public struct Item<K, V> { public K Key { get; se ...

  5. gdb optimized out错误解决

    转自:http://blog.csdn.net/cws1214/article/details/12023093 when linux gdb debug, print a variable, suc ...

  6. Java学习随笔5:Java多线程编程

    1. 线程是程序中单独顺序的控制流,线程本身依靠程序进行运行,线程是程序中的顺序控制流,只能使用分配给程序的资源和环境. 2. 进程是执行中的程序,一个进程可以包含一个或多个线程,但至少要包含一个线程 ...

  7. input上下居中问题

    IE:不管该行有没有文字,光标高度与font-size一致.FF:该行有文字时,光标高度与font-size一致.该行无文字时,光标高度与input的height一致.Chrome:该行无文字时,光标 ...

  8. phpexecel 导入导出,格式

    1.日期时间合并到c中 =a1 &b1 或 =a1 + b1 这些都是运算符 2.此时c1的值是这条公式,而并不是公式运算的结果 复制c,粘贴到d,选择粘贴值 3.此时c是时间日期格式的,如需 ...

  9. lr中switch的应用

    Action() { char *time; int i,j,length; time=lr_eval_string("{testtime}"); lr_error_message ...

  10. node.js整理 04网络操作

    简介 var http = require('http'); http.createServer(function (req, res) { res.writeHead(200, {'Content- ...