PDF version

PDF & CDF

The exponential probability density function (PDF) is $$f(x; \lambda) = \begin{cases}\lambda e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$ The exponential cumulative distribution function (CDF) is $$F(x; \lambda) = \begin{cases}1 - e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$

Proof:

$$ \begin{align*} F(x; \lambda) &= \int_{0}^{x}f(x; \lambda)\ dx\\ &= \int_{0}^{x}\lambda e^{-\lambda x}\ dx \\ &= \lambda\cdot\left(-{1\over\lambda}\right)\int_{0}^{x}e^{-\lambda x}\ d(-\lambda x)\\ &= -e^{-\lambda x}\Big|_{0}^{x}\\ &= 1 - e^{-\lambda x} \end{align*} $$ And $$F(\infty) = 1$$

Mean

The expected value is $$\mu = E[X] = {1\over\lambda}$$

Proof:

$$ \begin{align*} E\left[X^k\right] &= \int_{0}^{\infty}x^kf(x; \lambda)\ dx\\ &= \int_{0}^{\infty}x^k\lambda e^{-\lambda x}\ dx\\ &= -x^ke^{-\lambda x}\Big|_{0}^{\infty} + \int_{0}^{\infty}e^{-\lambda x}kx^{k-1}\ dx\quad\quad\quad\quad(\mbox{integrating by parts})\\ &= 0 + {k\over \lambda}\int_{0}^{\infty}x^{k-1}\lambda e^{-\lambda x}\ dx\\ &= {k\over\lambda}E\left[X^{k-1}\right] \end{align*} $$ Using the integrating by parts: $$u= x^k\Rightarrow du = kx^{k-1}\ dx,\ dv = \lambda e^{-\lambda x}\Rightarrow v = \int\lambda e^{-\lambda x}\ dx = -e^{-\lambda x}$$ $$\implies \int x^k\lambda e^{-\lambda x}\ dx =uv - \int vdu = -x^ke^{-\lambda x} + \int e^{-\lambda x}kx^{k-1}\ dx$$ Hence setting $k=1$: $$E[X]= {1\over\lambda}$$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = {1\over\lambda^2}$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= {2\over\lambda} E[X] \quad\quad \quad\quad (\mbox{setting}\ k=2)\\ &= {2\over\lambda^2} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {2\over\lambda^2} - {1\over\lambda^2}\\ &= {1\over\lambda^2} \end{align*} $$

Examples

1. Let $X$ be exponentially distributed with intensity $\lambda$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

$$\mu = {1\over\lambda},\ \sigma = {1\over\lambda}$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X - \mu| \geq 2\sigma\right) &= P\left(X \geq {3\over \lambda} \right)\\ &= 1-F\left({3\over\lambda}\right)\\ &= e^{-3}= 0.04978707 \end{align*} $$ Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$

2. Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda = {1\over10}$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait (a) more than 10 minutes; (b) between 10 and 20 minutes.

Solution:

Let $X$ be the length of the call made by the person in the booth. And $$f(x) = {1\over10}e^{-{1\over10}x},\ F(x) = 1-e^{-{1\over10}x}$$ (a) $$ \begin{align*} P( X > 10) &= 1 - P(X \leq 10)\\ &= 1 - F(10)\\ &= e^{-1}= 0.3678794 \end{align*} $$ (b) $$ \begin{align*} P(10 < X < 20) &= P(X < 20) - P(X < 10)\\ &= F(20) - F(10)\\ &= (1-e^{-2}) - (1 - e^{-1})\\ &= e^{-1} - e^{-2} = 0.2325442 \end{align*} $$

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  3. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  4. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  5. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  6. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. 航空货运:运价类别Rate Class

    1.普通货物运价(1)基础运价(代号N -注:Normal的首字母)民航总局统一规定各航段货物基础运价为45公斤以下普通货物运价.(2)重量分界点运价(代号Q  -注:Quantity的首字母)国内航 ...

  2. 2015-2016-2 《Java程序设计》 学生博客及Git@OSC 链接

    2015-2016-2 <Java程序设计> 学生博客及Git@OSC 链接 博客 1451 20145101王闰开 20145102周正一 20145103冯文华 20145104张家明 ...

  3. 多态、GC、Java数据类型

    多态 一.java中实现多态的机制是什么? 靠的是: 父类定义的引用变量可以指向子类的实例对象,或者接口定义的引用变量可以指向具体实现类的实例对象 而程序调用的方法,在运行期才动态绑定, 它就是引用变 ...

  4. c++虚函数注意事项

    >在基类方法声明中使用关键字virtual,可以使该方法在基类及所有的派生类中是虚的 >如果使用指向对象的引用或指针来调用虚方法,程序将使用对象类型定义的方法,而不使用为引用或指针类型定义 ...

  5. 你应该知道的25道Javascript面试题

    题目来自 25 Essential JavaScript Interview Questions.闲来无事,正好切一下. 一 What is a potential pitfall with usin ...

  6. C#基础之IEnumerable

    1.IEnumerable的作用 在使用Linq查询数据时经常以IEnumerable<T>来作为数据查询返回对象,在使用foreach进行遍历时需要该对象实现IEnumerable接口, ...

  7. 用 Linux自带的logrotate 来管理日志

    大家可能都有管理日志的需要,比如定时压缩日志,或者当日志超过一定大小时就自动分裂成两个文件等.最近就接到这样一个小任务.我们的程序用的是C语言,用log4cpp的library来实现日志记录.但是问题 ...

  8. [BZOJ1528][POI2005]sam-Toy Cars(贪心)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1528 分析:这个贪心很好想,因为每次如果加入一种玩具,那么必须要删掉一种玩具,就变成了 ...

  9. Recommending branded products from social media -RecSys 2013-20160422

    1.Information publication:RecSys 2013 author:zhengyong zhang 2.What 是对上一篇论文的拓展:利用社交媒体中用户信息 对用户购买的类别排 ...

  10. MyEclipse10连接数据库

    连接oracle数据库 DB窗口>>右键:新建