基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF & CDF
The exponential probability density function (PDF) is $$f(x; \lambda) = \begin{cases}\lambda e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$ The exponential cumulative distribution function (CDF) is $$F(x; \lambda) = \begin{cases}1 - e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$
Proof:
$$ \begin{align*} F(x; \lambda) &= \int_{0}^{x}f(x; \lambda)\ dx\\ &= \int_{0}^{x}\lambda e^{-\lambda x}\ dx \\ &= \lambda\cdot\left(-{1\over\lambda}\right)\int_{0}^{x}e^{-\lambda x}\ d(-\lambda x)\\ &= -e^{-\lambda x}\Big|_{0}^{x}\\ &= 1 - e^{-\lambda x} \end{align*} $$ And $$F(\infty) = 1$$
Mean
The expected value is $$\mu = E[X] = {1\over\lambda}$$
Proof:
$$ \begin{align*} E\left[X^k\right] &= \int_{0}^{\infty}x^kf(x; \lambda)\ dx\\ &= \int_{0}^{\infty}x^k\lambda e^{-\lambda x}\ dx\\ &= -x^ke^{-\lambda x}\Big|_{0}^{\infty} + \int_{0}^{\infty}e^{-\lambda x}kx^{k-1}\ dx\quad\quad\quad\quad(\mbox{integrating by parts})\\ &= 0 + {k\over \lambda}\int_{0}^{\infty}x^{k-1}\lambda e^{-\lambda x}\ dx\\ &= {k\over\lambda}E\left[X^{k-1}\right] \end{align*} $$ Using the integrating by parts: $$u= x^k\Rightarrow du = kx^{k-1}\ dx,\ dv = \lambda e^{-\lambda x}\Rightarrow v = \int\lambda e^{-\lambda x}\ dx = -e^{-\lambda x}$$ $$\implies \int x^k\lambda e^{-\lambda x}\ dx =uv - \int vdu = -x^ke^{-\lambda x} + \int e^{-\lambda x}kx^{k-1}\ dx$$ Hence setting $k=1$: $$E[X]= {1\over\lambda}$$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = {1\over\lambda^2}$$
Proof:
$$ \begin{align*} E\left[X^2\right] &= {2\over\lambda} E[X] \quad\quad \quad\quad (\mbox{setting}\ k=2)\\ &= {2\over\lambda^2} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {2\over\lambda^2} - {1\over\lambda^2}\\ &= {1\over\lambda^2} \end{align*} $$
Examples
1. Let $X$ be exponentially distributed with intensity $\lambda$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.
Solution:
$$\mu = {1\over\lambda},\ \sigma = {1\over\lambda}$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X - \mu| \geq 2\sigma\right) &= P\left(X \geq {3\over \lambda} \right)\\ &= 1-F\left({3\over\lambda}\right)\\ &= e^{-3}= 0.04978707 \end{align*} $$ Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over4} = 0.25$$
2. Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda = {1\over10}$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait (a) more than 10 minutes; (b) between 10 and 20 minutes.
Solution:
Let $X$ be the length of the call made by the person in the booth. And $$f(x) = {1\over10}e^{-{1\over10}x},\ F(x) = 1-e^{-{1\over10}x}$$ (a) $$ \begin{align*} P( X > 10) &= 1 - P(X \leq 10)\\ &= 1 - F(10)\\ &= e^{-1}= 0.3678794 \end{align*} $$ (b) $$ \begin{align*} P(10 < X < 20) &= P(X < 20) - P(X < 10)\\ &= F(20) - F(10)\\ &= (1-e^{-2}) - (1 - e^{-1})\\ &= e^{-1} - e^{-2} = 0.2325442 \end{align*} $$
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.
- Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5. ISBN: 978-87-7681-409-0.
基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- Alpha版本测试报告
请根据团队项目中软件的需求文档.功能规格说明书和技术规格说明书,写出软件的测试计划.测试过程和测试结果,并回答下述问题. 1. 在测试过程中发现了多少Bug? 2. 你是怎么进行场景测试(scenar ...
- <实训|第十一天>学习一下linux中的进程,文件查找,文件压缩与IO重定向
[root@localhost~]#序言 在今后的工作中,运维工程师每天的例行事务就是使用free -m,top,uptime,df -h...每天都要检查一下服务器,看看是否出现异常.那么今天我们就 ...
- 你误解 .net 了吗?
我现在发现很多人对C#还存在很大的误解,例如C#是完全封闭的,C#不能跨平台,C#性能很差,C#不支持指针等等,持以上观点的人非常多,甚至最近看到的国内某机构对开发语言的统计中还写着C#不跨平台,不开 ...
- Android音频播放之SoundPool
SoundPool 一.基本概念 在Android应用程序的开发过程中,经常需要播放多媒体文件,也许最先想到的会是MediaPlayer类了,该类提供了播放.暂停.停止及重复播放等功能性方法(该类位于 ...
- android之广播(二)
广播接受者不仅可以通过清单文件来向系统注册,也可以通过代码来注册.并且有的广播必须通过代码来注册广播接受者. 锁屏和解锁广播 电量改变广播 打开屏幕和关闭屏幕 这里将广播接收者写在服务里面 <? ...
- 70 sudo-用来以其他身份来执行命令
sudo命令用来以其他身份来执行命令,预设的身份为root.在/etc/sudoers中设置了可执行sudo指令的用户.若其未经授权的用户企图使用sudo,则会发出警告的邮件给管理员.用户使用sudo ...
- Android下的数据储存方式( 二)
在上一篇文章中我们介绍了SharedPreferences的使用方法. 今天我们继续介绍另一种储存数据的方式:使用内部储存和外部储存 每一个Android设备都拥有两个数据储存区域:外部储存和外部储存 ...
- exce生成随机数
有时候数据库没有数据,造数据专用. 来源于:http://jingyan.baidu.com/article/93f9803feba1f5e0e46f55f2.html 首先介绍一下如何用RAND() ...
- js 技巧和细节
1. if中的各种变量返回值 一个值为 true 或者 false 的表达式.如果需要,非 Boolean 表达式也可以被转换为 Boolean 值,但是要遵循下列规则: 所有的对象都被当作 true ...
- Java对象的访问
对象访问在Java语言中无处不在,即使最简单的访问也涉及Java栈.Java堆.方法区这三个重要的内存区域中. 例:Object obj = new Object(); Object obj ...