Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。

PDF笔记下载(Academia.edu)

Summary

Bayes Theorem $$P(A_i|B)=\frac{P(B|A_i)\cdot P(A_i)}{\sum_{j}P(B|A_j)\cdot P(A_j)}$$ where $$P(B)=\sum_{j}P(B|A_j)\cdot P(A_j)$$

GRADED EXERCISE SET 2

PROBLEM 1

Cards are dealt from a well shuffled standard deck. Find the chance that:

1A the first card is not a heart

1B the 10th card is the ace of spades

1C the 10th card is the ace of spades, given that the 50th card is the ace of diamonds

1D the 32nd card is red, given that the 51st and 52nd cards are red

1E the 51st card is red, given that the 32nd and 52nd cards are red

Solution

1A) $$P(\text{first card is not heart})=1-P(\text{first card is heart})=1-\frac{13}{52}=\frac{3}{4}$$

1B) Each card is randomly drawn thus the chance of a specific card is equivalent: $$P(\text{10th is ace of spades})=\frac{1}{52}$$

1C) There are 51 cards except the given card ace of diamonds, thus $$P(\text{10th is ace of spades}\ |\ \text{50th is ace of diamonds})=\frac{1}{51}$$

1D) $$P(\text{32nd is red}\ |\ \text{51st and 52nd are red})=\frac{26-2}{52-2}=\frac{12}{25}$$

1E) $$P(\text{51st is red}\ |\ \text{32nd and 52nd are red})=\frac{26-2}{52-2}=\frac{12}{25}$$

PROBLEM 2

A person is selected at random from a population that has the following characteristics: 65% of the people are men; the others are women 12% of the men are smokers 7% of the women are smokers

2A Find (correct to four decimal places) the chance that the selected person is a non-smoker, given that the person is a man.

2B Find (correct to four decimal places) the chance that the selected person is a woman who smokes.

2C Find (correct to four decimal places) the chance that the selected person is a smoker.

2D Given that the selected person is a smoker, what is the chance that the person is a woman? Please give your answer correct to four decimal places.

2E Find (correct to four decimal places) the chance that the selected person is a man or a non-smoker.

Solution

2A) $$P(\text{non-smoker}\ |\ \text{man})=1-0.12=0.88$$

2B) $$P(\text{woman & smoker})=(1-0.65)\times0.07=0.0245$$

2C) $$P(\text{smoker})=P(\text{smoker & man})+P(\text{smoker & woman})$$ $$=0.65\times0.12+(1-0.65)\times0.07=0.1025$$

2D) $$P(\text{woman}\ |\ \text{smoker})=\frac{P(\text{woman & smoker})}{P(\text{smoker})}=\frac{0.35\times0.07}{0.1025}=0.2390244$$

2E) $$P(\text{man or non-smoker})=P(\text{man})+P(\text{non-smoker})-P(\text{man & non-smoker})$$ $$=0.65+(1-0.1025)-0.65\times0.88=0.9755$$

PROBLEM 3

I am with a group of five of my friends. A box contains 8 pieces each of milk chocolate, white chocolate, and dark chocolate. The box is passed around the six of us, with each person taking 4 pieces. Assume that each person chooses at random without replacement from the available pieces. I am the last person to whom the box is passed. Find the chance that I pick 4 dark chocolates.

Solution

It it no difference between "I" am the first and "I" am the last. $$P=\frac{C_{8}^{4}}{C_{24}^{4}}=\frac{35}{5313}=0.006587615$$ $C_{n}^{m}=\frac{n!}{m!\cdot(n-m)!}$ and its R function is $\text{choose(n, m)}$.

PROBLEM 4

An urn contains 10 white balls and 5 blue balls. Draws are made repeatedly from the urn as follows. On each draw, a ball is drawn and its color noted; then it is replaced in the urn along with 3 more balls of its color. For example, if you draw a white ball the first time, then you will put it back in the urn along with 3 more white balls. So you will end up with 13 white balls and 5 blue balls.

4A Find the chance that the first ball drawn is blue.

4B Find the chance that the second ball drawn is blue, given that the first ball drawn is blue.

4C Find the chance that the second ball drawn is blue.

4D Find the chance that the first ball drawn is blue, given that the second ball drawn is blue.

Solution

4A) $$P(\text{first is blue})=\frac{5}{10+5}=\frac{1}{3}$$

4B) If the first is blue then it would be 10 white balls and 8 blue balls before the second draw. Hence $$P(\text{second is blue}\ |\ \text{first is blue})=\frac{8}{10+8}=\frac{4}{9}$$

4C) $$P(\text{second is blue})=P(\text{second is blue & first is white})+P(\text{second is blue & first is blue})$$ $$=P(\text{first is white})\cdot P(\text{second is blue}\ |\ \text{first is white})$$ $$+P(\text{first is blue})\cdot P(\text{second is blue}\ |\ \text{first is blue})$$ $$=\frac{10}{15}\times\frac{5}{13+5}+\frac{5}{15}\times\frac{8}{10+8}=\frac{1}{3}$$

4D) $$P(\text{first is blue}\ |\ \text{second is blue})=\frac{P(\text{first & second are blue})}{P(\text{second is blue})}=\frac{\frac{5}{15}\times\frac{8}{10+8}}{\frac{1}{3}}=\frac{4}{9}$$

加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)的更多相关文章

  1. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  2. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  3. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  4. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  5. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  6. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  7. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  8. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  9. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

随机推荐

  1. c++ 指针(一)

    指针:是说指针名表示的是地址.是一个变量,存储的是值的地址,而不是值本身 *运算符被称为间接值或解除引用运算符也可以叫做取地址符 声明一个指针 int * p_data; * p_data的类型为in ...

  2. 探究JVM——垃圾回收

    垃圾回收主要考虑三件事情:哪些内存需要回收?什么时候回收?如何回收? 一.哪些内存需要回收? 堆内存:对于JVM 来说,垃圾回收主要是针对堆内存中的对象实例. 方法区:垃圾收集行为在方法区是比较少出现 ...

  3. [C#解惑] #2 对象的初始化顺序

    谜题 在上一篇C#解惑中,我们提到了对象的初始化顺序.当我们创建一个子类的实例时,总是会先执行基类的构造函数,然后再执行子类的构造函数.那么实例字段是什么时候初始化的呢?静态构造函数和静态字段呢?今天 ...

  4. [HDU5903]Square Distance(DP)

    题意:给一个字符串t ,求与这个序列刚好有m个位置字符不同的由两个相同的串拼接起来的字符串 s,要求字典序最小的答案. 分析:按照贪心的想法,肯定在前面让字母尽量小,尽可能的填a,但问题是不知道前面填 ...

  5. java中的URLConnection

    *URLConnection是个抽象类,它有两个直接子类分别是HttpURLConnection和JarURLConnection.另外一个重要的类是URL,通常URL可以通过传给构造器一个Strin ...

  6. linux 定时执行scrapy命令

    解决方案: 1.以管理员方式执行命令添加计划 sudo crontab -e 添加: 1 0 * * * sh /home/ubuntu/CRON/cron.sh 2. 重启cron服务 sudo s ...

  7. zabbix解决中文乱码问题(没有测试成功)

    zabbix解决中文乱码问题 1.在windows系统中找一个自己喜欢的字体,这里我们用:msyh.ttf 2.将字体上传至/var/www/html/zabbix/fonts目录下 [root@za ...

  8. 使用Servlet实现下载文件的功能

    在前台有一个下载链接,比如 <a href="DownLoadServlet">下载</a> <br/> 使用Servlet实现下载: impo ...

  9. 利用ajaxfileupload.js异步上传文件

    1.引入ajaxfileupload.js 2.html代码 <input type="file" id="enclosure" name="e ...

  10. 【BZOJ 4569】【SCOI 2016】萌萌哒

    http://www.lydsy.com/JudgeOnline/problem.php?id=4569 用ST表表示所有区间,根据ST表中表示的区间长度种一棵nlogn的树,类似线段树,每个节点的左 ...