hdu3982 直线切多边形 【WA中...】
题意:有一块蛋糕,上面有一颗cherry。用刀子切n次,求切完之后有cherry的那部分的面积
My solution:
先做一个大矩形,使cake内切于这个大矩形。如图:
然后不断切这个大矩形,每次切割的时候保留与cherry同侧的那部分。最后剩下的就是一个多边形。求该多边形与圆的面积交即可。
在切割的时候如何保证留下来的是与cherry同侧的部分呢?很简单
方法不难,但是一直WA= =。遇到了个奇怪的问题:
对于这组数据:
3
5 2
-5 0 5 3
-5 0 5 -3
0 0
5 2
-5 0 5 3
-5 0 5 -3
0 4.9
5 2
-5 0 5 3
-5 0 5 -3
0 -4.9
画出来图是这样的:
标程输出结果:
My solution:
可是标程明显不对啊尼玛!加起来都超过1了是什么鬼!
思考ing.........
附WA code:
#include<vector>
#include<list>
#include<map>
#include<set>
#include<deque>
#include<queue>
#include<stack>
#include<bitset>
#include<algorithm>
#include<functional>
#include<numeric>
#include<utility>
#include<iostream>
#include<sstream>
#include<iomanip>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cctype>
#include<string>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<climits>
#include<complex>
#define mp make_pair
#define pb push_back
using namespace std;
const double eps=1e-;
const double pi=acos(-1.0);
const double inf=1e20;
const int maxp=; int sgn(double x)
{
if (fabs(x)<eps) return ;
if (x<) return -;
else return ;
} int dblcmp(double d)
{
if (fabs(d)<eps)return ;
return d>eps?:-;
} inline double sqr(double x){return x*x;} struct point
{
double x,y;
point(){}
point(double _x,double _y):
x(_x),y(_y){};
void input()
{
scanf("%lf%lf",&x,&y);
}
void output()
{
printf("%.2f %.2f\n",x,y);
}
bool operator==(point a)const
{
return dblcmp(a.x-x)==&&dblcmp(a.y-y)==;
}
bool operator<(point a)const
{
return dblcmp(a.x-x)==?dblcmp(y-a.y)<:x<a.x;
} point operator +(const point &b)const
{
return point(x+b.x,y+b.y);
}
point operator -(const point &b)const
{
return point(x-b.x,y-b.y);
}
point operator *(const double &k)const
{
return point(x*k,y*k);
}
point operator /(const double &k)const
{
return point(x/k,y/k);
}
double operator *(const point &b)const
{
return x*b.x+y*b.y;
}
double operator ^(const point &b)const
{
return x*b.y-y*b.x;
} double len()
{
return hypot(x,y);
}
double len2()
{
return x*x+y*y;
}
double distance(point p)
{
return hypot(x-p.x,y-p.y);
}
point add(point p)
{
return point(x+p.x,y+p.y);
}
point sub(point p)
{
return point(x-p.x,y-p.y);
}
point mul(double b)
{
return point(x*b,y*b);
}
point div(double b)
{
return point(x/b,y/b);
}
double dot(point p)
{
return x*p.x+y*p.y;
}
double det(point p)
{
return x*p.y-y*p.x;
}
double rad(point a,point b)
{
point p=*this;
return fabs(atan2(fabs(a.sub(p).det(b.sub(p))),a.sub(p).dot(b.sub(p))));
}
point trunc(double r)
{
double l=len();
if (!dblcmp(l))return *this;
r/=l;
return point(x*r,y*r);
}
point rotleft()
{
return point(-y,x);
}
point rotright()
{
return point(y,-x);
}
point rotate(point p,double angle)//绕点p逆时针旋转angle角度
{
point v=this->sub(p);
double c=cos(angle),s=sin(angle);
return point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c);
}
}; struct line
{
point a,b;
line(){}
line(point _a,point _b)
{
a=_a;
b=_b;
}
bool operator==(line v)
{
return (a==v.a)&&(b==v.b);
}
//倾斜角angle
line(point p,double angle)
{
a=p;
if (dblcmp(angle-pi/)==)
{
b=a.add(point(,));
}
else
{
b=a.add(point(,tan(angle)));
}
}
//ax+by+c=0
line(double _a,double _b,double _c)
{
if (dblcmp(_a)==)
{
a=point(,-_c/_b);
b=point(,-_c/_b);
}
else if (dblcmp(_b)==)
{
a=point(-_c/_a,);
b=point(-_c/_a,);
}
else
{
a=point(,-_c/_b);
b=point(,(-_c-_a)/_b);
}
}
void input()
{
a.input();
b.input();
}
void adjust()
{
if (b<a)swap(a,b);
}
double length()
{
return a.distance(b);
}
double angle()//直线倾斜角 0<=angle<180
{
double k=atan2(b.y-a.y,b.x-a.x);
if (dblcmp(k)<)k+=pi;
if (dblcmp(k-pi)==)k-=pi;
return k;
}
//点和线段关系
//1 在逆时针
//2 在顺时针
//3 平行
int relation(point p)
{
int c=dblcmp(p.sub(a).det(b.sub(a)));
if (c<)return ;
if (c>)return ;
return ;
}
bool pointonseg(point p)
{
return dblcmp(p.sub(a).det(b.sub(a)))==&&dblcmp(p.sub(a).dot(p.sub(b)))<=;
}
bool parallel(line v)
{
return dblcmp(b.sub(a).det(v.b.sub(v.a)))==;
}
//2 规范相交
//1 非规范相交
//0 不相交
int segcrossseg(line v)
{
int d1=dblcmp(b.sub(a).det(v.a.sub(a)));
int d2=dblcmp(b.sub(a).det(v.b.sub(a)));
int d3=dblcmp(v.b.sub(v.a).det(a.sub(v.a)));
int d4=dblcmp(v.b.sub(v.a).det(b.sub(v.a)));
if ((d1^d2)==-&&(d3^d4)==-)return ;
return (d1==&&dblcmp(v.a.sub(a).dot(v.a.sub(b)))<=||
d2==&&dblcmp(v.b.sub(a).dot(v.b.sub(b)))<=||
d3==&&dblcmp(a.sub(v.a).dot(a.sub(v.b)))<=||
d4==&&dblcmp(b.sub(v.a).dot(b.sub(v.b)))<=);
}
int linecrossseg(line v)//*this seg v line
{
int d1=dblcmp(b.sub(a).det(v.a.sub(a)));
int d2=dblcmp(b.sub(a).det(v.b.sub(a)));
if ((d1^d2)==-)return ;
return (d1==||d2==);
}
//0 平行
//1 重合
//2 相交
int linecrossline(line v)
{
if ((*this).parallel(v))
{
return v.relation(a)==;
}
return ;
}
point crosspoint(line v)
{
double a1=v.b.sub(v.a).det(a.sub(v.a));
double a2=v.b.sub(v.a).det(b.sub(v.a));
return point((a.x*a2-b.x*a1)/(a2-a1),(a.y*a2-b.y*a1)/(a2-a1));
}
double dispointtoline(point p)
{
return fabs(p.sub(a).det(b.sub(a)))/length();
}
double dispointtoseg(point p)
{
if (dblcmp(p.sub(b).dot(a.sub(b)))<||dblcmp(p.sub(a).dot(b.sub(a)))<)
{
return min(p.distance(a),p.distance(b));
}
return dispointtoline(p);
}
point lineprog(point p)
{
return a.add(b.sub(a).mul(b.sub(a).dot(p.sub(a))/b.sub(a).len2()));
}
point symmetrypoint(point p)
{
point q=lineprog(p);
return point(*q.x-p.x,*q.y-p.y);
}
}; struct Vector:public point
{
Vector(){}
Vector(double a,double b)
{
x=a; y=b;
}
Vector(point _a,point _b) //a->b
{
double dx=_b.x-_a.x;
double dy=_b.y-_a.y;
x=dx; y=dy;
}
Vector(line v)
{
double dx=v.b.x-v.a.x;
double dy=v.b.y-v.a.y;
x=dx; y=dy;
}
double length()
{
return (sqrt(x*x+y*y));
}
Vector Normal()
{
double L=sqrt(x*x+y*y);
Vector Vans=Vector(-y/L,x/L);
return Vans;
}
}; struct circle
{
point p;
double r;
circle(){}
circle(point _p,double _r):
p(_p),r(_r){};
circle(double x,double y,double _r):
p(point(x,y)),r(_r){};
circle(point a,point b,point c)//三角形的外接圆
{
p=line(a.add(b).div(),a.add(b).div().add(b.sub(a).rotleft())).crosspoint(line(c.add(b).div(),c.add(b).div().add(b.sub(c).rotleft())));
r=p.distance(a);
}
circle(point a,point b,point c,bool t)//三角形的内切圆
{
line u,v;
double m=atan2(b.y-a.y,b.x-a.x),n=atan2(c.y-a.y,c.x-a.x);
u.a=a;
u.b=u.a.add(point(cos((n+m)/),sin((n+m)/)));
v.a=b;
m=atan2(a.y-b.y,a.x-b.x),n=atan2(c.y-b.y,c.x-b.x);
v.b=v.a.add(point(cos((n+m)/),sin((n+m)/)));
p=u.crosspoint(v);
r=line(a,b).dispointtoseg(p);
}
void input()
{
p.input();
scanf("%lf",&r);
}
void output()
{
printf("%.2lf %.2lf %.2lf\n",p.x,p.y,r);
}
bool operator==(circle v)
{
return ((p==v.p)&&dblcmp(r-v.r)==);
}
bool operator<(circle v)const
{
return ((p<v.p)||(p==v.p)&&dblcmp(r-v.r)<);
}
double area()
{
return pi*sqr(r);
}
double circumference()
{
return *pi*r;
}
//0 圆外
//1 圆上
//2 圆内
int relation(point b)
{
double dst=b.distance(p);
if (dblcmp(dst-r)<)return ;
if (dblcmp(dst-r)==)return ;
return ;
}
int relationseg(line v)
{
double dst=v.dispointtoseg(p);
if (dblcmp(dst-r)<)return ;
if (dblcmp(dst-r)==)return ;
return ;
}
int relationline(line v)
{
double dst=v.dispointtoline(p);
if (dblcmp(dst-r)<)return ;
if (dblcmp(dst-r)==)return ;
return ;
}
//过a b两点 半径r的两个圆
int getcircle(point a,point b,double r,circle&c1,circle&c2)
{
circle x(a,r),y(b,r);
int t=x.pointcrosscircle(y,c1.p,c2.p);
if (!t)return ;
c1.r=c2.r=r;
return t;
}
//与直线u相切 过点q 半径r1的圆
int getcircle(line u,point q,double r1,circle &c1,circle &c2)
{
double dis=u.dispointtoline(q);
if (dblcmp(dis-r1*)>)return ;
if (dblcmp(dis)==)
{
c1.p=q.add(u.b.sub(u.a).rotleft().trunc(r1));
c2.p=q.add(u.b.sub(u.a).rotright().trunc(r1));
c1.r=c2.r=r1;
return ;
}
line u1=line(u.a.add(u.b.sub(u.a).rotleft().trunc(r1)),u.b.add(u.b.sub(u.a).rotleft().trunc(r1)));
line u2=line(u.a.add(u.b.sub(u.a).rotright().trunc(r1)),u.b.add(u.b.sub(u.a).rotright().trunc(r1)));
circle cc=circle(q,r1);
point p1,p2;
if (!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2);
c1=circle(p1,r1);
if (p1==p2)
{
c2=c1;return ;
}
c2=circle(p2,r1);
return ;
}
//同时与直线u,v相切 半径r1的圆
int getcircle(line u,line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4)
{
if (u.parallel(v))return ;
line u1=line(u.a.add(u.b.sub(u.a).rotleft().trunc(r1)),u.b.add(u.b.sub(u.a).rotleft().trunc(r1)));
line u2=line(u.a.add(u.b.sub(u.a).rotright().trunc(r1)),u.b.add(u.b.sub(u.a).rotright().trunc(r1)));
line v1=line(v.a.add(v.b.sub(v.a).rotleft().trunc(r1)),v.b.add(v.b.sub(v.a).rotleft().trunc(r1)));
line v2=line(v.a.add(v.b.sub(v.a).rotright().trunc(r1)),v.b.add(v.b.sub(v.a).rotright().trunc(r1)));
c1.r=c2.r=c3.r=c4.r=r1;
c1.p=u1.crosspoint(v1);
c2.p=u1.crosspoint(v2);
c3.p=u2.crosspoint(v1);
c4.p=u2.crosspoint(v2);
return ;
}
//同时与不相交圆cx,cy相切 半径为r1的圆
int getcircle(circle cx,circle cy,double r1,circle&c1,circle&c2)
{
circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r);
int t=x.pointcrosscircle(y,c1.p,c2.p);
if (!t)return ;
c1.r=c2.r=r1;
return t;
}
int pointcrossline(line v,point &p1,point &p2)//求与线段交要先判断relationseg
{
if (!(*this).relationline(v))return ;
point a=v.lineprog(p);
double d=v.dispointtoline(p);
d=sqrt(r*r-d*d);
if (dblcmp(d)==)
{
p1=a;
p2=a;
return ;
}
p1=a.sub(v.b.sub(v.a).trunc(d));
p2=a.add(v.b.sub(v.a).trunc(d));
return ;
}
//5 相离
//4 外切
//3 相交
//2 内切
//1 内含
int relationcircle(circle v)
{
double d=p.distance(v.p);
if (dblcmp(d-r-v.r)>)return ;
if (dblcmp(d-r-v.r)==)return ;
double l=fabs(r-v.r);
if (dblcmp(d-r-v.r)<&&dblcmp(d-l)>)return ;
if (dblcmp(d-l)==)return ;
if (dblcmp(d-l)<)return ;
}
int pointcrosscircle(circle v,point &p1,point &p2)
{
int rel=relationcircle(v);
if (rel==||rel==)return ;
double d=p.distance(v.p);
double l=(d+(sqr(r)-sqr(v.r))/d)/;
double h=sqrt(sqr(r)-sqr(l));
p1=p.add(v.p.sub(p).trunc(l).add(v.p.sub(p).rotleft().trunc(h)));
p2=p.add(v.p.sub(p).trunc(l).add(v.p.sub(p).rotright().trunc(h)));
if (rel==||rel==)
{
return ;
}
return ;
}
//过一点做圆的切线 (先判断点和圆关系)
int tangentline(point q,line &u,line &v)
{
int x=relation(q);
if (x==)return ;
if (x==)
{
u=line(q,q.add(q.sub(p).rotleft()));
v=u;
return ;
}
double d=p.distance(q);
double l=sqr(r)/d;
double h=sqrt(sqr(r)-sqr(l));
u=line(q,p.add(q.sub(p).trunc(l).add(q.sub(p).rotleft().trunc(h))));
v=line(q,p.add(q.sub(p).trunc(l).add(q.sub(p).rotright().trunc(h))));
return ;
}
double areacircle(circle v)
{
int rel=relationcircle(v);
if (rel>=)return 0.0;
if (rel<=)return min(area(),v.area());
double d=p.distance(v.p);
double hf=(r+v.r+d)/2.0;
double ss=*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d));
double a1=acos((r*r+d*d-v.r*v.r)/(2.0*r*d));
a1=a1*r*r;
double a2=acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d));
a2=a2*v.r*v.r;
return a1+a2-ss;
}
double areatriangle(point a,point b)
{
if (dblcmp(p.sub(a).det(p.sub(b))==))return 0.0;
point q[];
int len=;
q[len++]=a;
line l(a,b);
point p1,p2;
if (pointcrossline(l,q[],q[])==)
{
if (dblcmp(a.sub(q[]).dot(b.sub(q[])))<)q[len++]=q[];
if (dblcmp(a.sub(q[]).dot(b.sub(q[])))<)q[len++]=q[];
}
q[len++]=b;
if (len==&&(dblcmp(q[].sub(q[]).dot(q[].sub(q[])))>))swap(q[],q[]);
double res=;
int i;
for (i=;i<len-;i++)
{
if (relation(q[i])==||relation(q[i+])==)
{
double arg=p.rad(q[i],q[i+]);
res+=r*r*arg/2.0;
}
else
{
res+=fabs(q[i].sub(p).det(q[i+].sub(p))/2.0);
}
}
return res;
}
}; struct polygon
{
int n;
point p[maxp];
line l[maxp];
void input(int X)
{
n=X;
for (int i=;i<n;i++)
{
p[i].input();
}
}
void add(point q)
{
p[n++]=q;
}
void getline()
{
for (int i=;i<n;i++)
{
l[i]=line(p[i],p[(i+)%n]);
}
}
struct cmp
{
point p;
cmp(const point &p0){p=p0;}
bool operator()(const point &aa,const point &bb)
{
point a=aa,b=bb;
int d=dblcmp(a.sub(p).det(b.sub(p)));
if (d==)
{
return dblcmp(a.distance(p)-b.distance(p))<;
}
return d>;
}
};
void norm()
{
point mi=p[];
for (int i=;i<n;i++)mi=min(mi,p[i]);
sort(p,p+n,cmp(mi));
}
void getconvex(polygon &convex)
{
int i,j,k;
sort(p,p+n);
convex.n=n;
for (i=;i<min(n,);i++)
{
convex.p[i]=p[i];
}
if (n<=)return;
int &top=convex.n;
top=;
for (i=;i<n;i++)
{
while (top&&convex.p[top].sub(p[i]).det(convex.p[top-].sub(p[i]))<=)
top--;
convex.p[++top]=p[i];
}
int temp=top;
convex.p[++top]=p[n-];
for (i=n-;i>=;i--)
{
while (top!=temp&&convex.p[top].sub(p[i]).det(convex.p[top-].sub(p[i]))<=)
top--;
convex.p[++top]=p[i];
}
} //ADD
//a new oonvex algorithm
/* void Graham(polygon &convex)
{
norm();
int &top=convex.n;
top=0;
if (n==1)
{
top=1;
convex.p[0]=p[0];
return;
}
if (n==2)
{
top=2;
convex.p[0]=p[0];
convex.p[1]=p[1];
if (convex.p[0]==convex.p[1]) top--;
return;
}
convex.p[0]=p[0];
convex.p[1]=p[1];
top=2;
for (int i=2;i<n;i++)
{
while (top>1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-convex.p[top-2]))<=0)
top--;
convex.p[top++]=p[i];
}
if (convex.n==2 && (convex.p[0]==convex.p[1])) convex.n--;
}
*/
bool isconvex()
{
bool s[];
memset(s,,sizeof(s));
int i,j,k;
for (i=;i<n;i++)
{
j=(i+)%n;
k=(j+)%n;
s[dblcmp(p[j].sub(p[i]).det(p[k].sub(p[i])))+]=;
if (s[]&&s[])return ;
}
return ;
}
//3 点上
//2 边上
//1 内部
//0 外部
int relationpoint(point q)
{
int i,j;
for (i=;i<n;i++)
{
if (p[i]==q)return ;
}
getline();
for (i=;i<n;i++)
{
if (l[i].pointonseg(q))return ;
}
int cnt=;
for (i=;i<n;i++)
{
j=(i+)%n;
int k=dblcmp(q.sub(p[j]).det(p[i].sub(p[j])));
int u=dblcmp(p[i].y-q.y);
int v=dblcmp(p[j].y-q.y);
if (k>&&u<&&v>=)cnt++;
if (k<&&v<&&u>=)cnt--;
}
return cnt!=;
}
//1 在多边形内长度为正
//2 相交或与边平行
//0 无任何交点
int relationline(line u)
{
int i,j,k=;
getline();
for (i=;i<n;i++)
{
if (l[i].segcrossseg(u)==)return ;
if (l[i].segcrossseg(u)==)k=;
}
if (!k)return ;
vector<point>vp;
for (i=;i<n;i++)
{
if (l[i].segcrossseg(u))
{
if (l[i].parallel(u))
{
vp.pb(u.a);
vp.pb(u.b);
vp.pb(l[i].a);
vp.pb(l[i].b);
continue;
}
vp.pb(l[i].crosspoint(u));
}
}
sort(vp.begin(),vp.end());
int sz=vp.size();
for (i=;i<sz-;i++)
{
point mid=vp[i].add(vp[i+]).div();
if (relationpoint(mid)==)return ;
}
return ;
}
//直线u切割凸多边形左侧
//注意直线方向
void convexcut(line u,polygon &po)
{
int i,j,k;
int &top=po.n;
top=;
for (i=;i<n;i++)
{
int d1=dblcmp(p[i].sub(u.a).det(u.b.sub(u.a)));
int d2=dblcmp(p[(i+)%n].sub(u.a).det(u.b.sub(u.a)));
if (d1>=)po.p[top++]=p[i];
if (d1*d2<)po.p[top++]=u.crosspoint(line(p[i],p[(i+)%n]));
}
}
double getcircumference()
{
double sum=;
int i;
for (i=;i<n;i++)
{
sum+=p[i].distance(p[(i+)%n]);
}
return sum;
}
double getarea()
{
double sum=;
int i;
for (i=;i<n;i++)
{
sum+=p[i].det(p[(i+)%n]);
}
return fabs(sum)/;
}
bool getdir()//1代表逆时针 0代表顺时针
{
double sum=;
int i;
for (i=;i<n;i++)
{
sum+=p[i].det(p[(i+)%n]);
}
if (dblcmp(sum)>)return ;
return ;
}
point getbarycentre()
{
point ret(,);
double area=;
int i;
for (i=;i<n-;i++)
{
double tmp=p[i].sub(p[]).det(p[i+].sub(p[]));
if (dblcmp(tmp)==)continue;
area+=tmp;
ret.x+=(p[].x+p[i].x+p[i+].x)/*tmp;
ret.y+=(p[].y+p[i].y+p[i+].y)/*tmp;
}
if (dblcmp(area))ret=ret.div(area);
return ret;
}
/* shen me gui !
double areaintersection(polygon po)
{
}
double areaunion(polygon po)
{
return getarea()+po.getarea()-areaintersection(po);
}
*/
double areacircle(circle c)
{
int i,j,k,l,m;
double ans=;
for (i=;i<n;i++)
{
int j=(i+)%n;
if (dblcmp(p[j].sub(c.p).det(p[i].sub(c.p)))>=)
{
ans+=c.areatriangle(p[i],p[j]);
}
else
{
ans-=c.areatriangle(p[i],p[j]);
}
}
return fabs(ans);
}
//多边形和圆关系
//0 一部分在圆外
//1 与圆某条边相切
//2 完全在圆内
int relationcircle(circle c)
{
getline();
int i,x=;
if (relationpoint(c.p)!=)return ;
for (i=;i<n;i++)
{
if (c.relationseg(l[i])==)return ;
if (c.relationseg(l[i])==)x=;
}
return x;
}
void find(int st,point tri[],circle &c)
{
if (!st)
{
c=circle(point(,),-);
}
if (st==)
{
c=circle(tri[],);
}
if (st==)
{
c=circle(tri[].add(tri[]).div(),tri[].distance(tri[])/2.0);
}
if (st==)
{
c=circle(tri[],tri[],tri[]);
}
}
void solve(int cur,int st,point tri[],circle &c)
{
find(st,tri,c);
if (st==)return;
int i;
for (i=;i<cur;i++)
{
if (dblcmp(p[i].distance(c.p)-c.r)>)
{
tri[st]=p[i];
solve(i,st+,tri,c);
}
}
}
circle mincircle()//点集最小圆覆盖
{
random_shuffle(p,p+n);
point tri[];
circle c;
solve(n,,tri,c);
return c;
}
int circlecover(double r)//单位圆覆盖
{
int ans=,i,j;
vector<pair<double,int> >v;
for (i=;i<n;i++)
{
v.clear();
for (j=;j<n;j++)if (i!=j)
{
point q=p[i].sub(p[j]);
double d=q.len();
if (dblcmp(d-*r)<=)
{
double arg=atan2(q.y,q.x);
if (dblcmp(arg)<)arg+=*pi;
double t=acos(d/(*r));
v.push_back(make_pair(arg-t+*pi,-));
v.push_back(make_pair(arg+t+*pi,));
}
}
sort(v.begin(),v.end());
int cur=;
for (j=;j<v.size();j++)
{
if (v[j].second==-)++cur;
else --cur;
ans=max(ans,cur);
}
}
return ans+;
}
int pointinpolygon(point q)//点在凸多边形内部的判定
{
if (getdir())reverse(p,p+n);
if (dblcmp(q.sub(p[]).det(p[n-].sub(p[])))==)
{
if (line(p[n-],p[]).pointonseg(q))return n-;
return -;
}
int low=,high=n-,mid;
while (low<=high)
{
mid=(low+high)>>;
if (dblcmp(q.sub(p[]).det(p[mid].sub(p[])))>=&&dblcmp(q.sub(p[]).det(p[mid+].sub(p[])))<)
{
polygon c;
c.p[]=p[mid];
c.p[]=p[mid+];
c.p[]=p[];
c.n=;
if (c.relationpoint(q))return mid;
return -;
}
if (dblcmp(q.sub(p[]).det(p[mid].sub(p[])))>)
{
low=mid+;
}
else
{
high=mid-;
}
}
return -;
} //ADD
//最小矩形面积覆盖
//A必须是凸包(而且是逆时针顺序)
//Uva 10173
double cross(point A,point B,point C)
{}
double dot(point A,point B,point C)
{}
double minRectangleCover(polygon A)
{} //ADD
//直线切凸多边形
//多边形是逆时针的,在q1q2的左侧
//HDU3982
/*
vector<point> convexcut(const vector<point> &ps,point q1,point q2)
{
vector<point> qs;
int n=ps.size();
for (int i=0;i<n;i++)
{
point p1=ps[i],p2=ps[(i+1)%n];
int d1=sgn((q2-q1)^(p1-q1)),d2=sgn((q2-q1)^(p2-q1));
if (d1>=0)
qs.push_back(p1);
if (d1*d2<0)
qs.push_back(line(p1,p2).crosspoint(line(q1,q2)));
}
return qs;
}
*/
}; //ADD
//直线切凸多边形
//多边形是逆时针的,在q1q2的左侧
//HDU3982
vector<point> convexcut(const vector<point> &ps,point q1,point q2)
{
vector<point> qs;
int n=ps.size();
for (int i=; i<n; i++)
{
point p1=ps[i],p2=ps[(i+)%n];
int d1=sgn((q2-q1)^(p1-q1)),d2=sgn((q2-q1)^(p2-q1));
if (d1>=)
qs.push_back(p1);
if (d1*d2<)
qs.push_back(line(p1,p2).crosspoint(line(q1,q2)));
}
return qs;
} double CutLine[][];
point Cherry;
int TotalTimes,n;
double r; int main()
{
freopen("in.txt","r",stdin); cin>>TotalTimes;
for (int Times=;Times<=TotalTimes;Times++)
{
//cin>>r>>n;
scanf("%lf%d",&r,&n);
circle Cake=circle(point(0.00,0.00),r);
vector<point> BigPolygon;
BigPolygon.push_back(point(-r,r));
BigPolygon.push_back(point(-r,-r));
BigPolygon.push_back(point(r,-r));
BigPolygon.push_back(point(r,r)); for (int i=;i<=n;i++)
scanf("%lf%lf%lf%lf",&CutLine[i][],&CutLine[i][],&CutLine[i][],&CutLine[i][]);
//cin>>CutLine[i][1]>>CutLine[i][2]>>CutLine[i][3]>>CutLine[i][4]; Cherry.input(); for (int i=;i<=n;i++)
{
line cut(point(CutLine[i][],CutLine[i][]),point(CutLine[i][],CutLine[i][]));
if (cut.relation(Cherry)==)
{
//cut=line(point(CutLine[i][3],CutLine[i][4]),point(CutLine[i][1],CutLine[i][2]));
BigPolygon=convexcut(BigPolygon,point(CutLine[i][],CutLine[i][]),point(CutLine[i][],CutLine[i][]));
}
else
{
BigPolygon=convexcut(BigPolygon,point(CutLine[i][],CutLine[i][]),point(CutLine[i][],CutLine[i][]));
}
} polygon Bigpolygon; Bigpolygon.n=;
for (vector<point>::iterator i=BigPolygon.begin();i!=BigPolygon.end();i++)
{
point tmp=*i;
Bigpolygon.add(tmp);
}
//double ans=Bigpolygon.getarea();
double CakeArea=Cake.area();
double ans=Bigpolygon.areacircle(Cake);
ans=ans/CakeArea*;
printf("Case %d: %.5lf%%\n",Times,ans);
}
return ;
}
Reference:http://blog.csdn.net/zxy_snow/article/details/6739561
话说自从开始刷计算几何之后发现自己代码风格越来越屎了,满满的工程代码既视感。。【逃
hdu3982 直线切多边形 【WA中...】的更多相关文章
- opengl基础学习专题 (二) 点直线和多边形
题外话 随着学习的增长,越来越觉得自己很水.关于上一篇博文中推荐用一个 学习opengl的 基于VS2015的 simplec框架.存在 一些问题. 1.这个框架基于VS 的Debug 模式下,没有考 ...
- OpenGL学习-------点、直线、多边形
上一课中,我们学习了如何绘制几何图形,但大家如果多写几个程序,就会发现其实还是有些郁闷之处.例如:点太小,难以看清楚:直线也太细,不舒服:或者想画虚线,但不知道方法只能用许多短直线,甚至用点组合而成. ...
- C++实现glut绘制点、直线、多边形、圆
C++实现glut绘制点.直线.多边形.圆 必备环境 glut.h 头文件 glut32.lib 对象文件库 glut32.dll 动态连接库 程序说明 C++实现了用glut画点.画直线.画多边形和 ...
- UVALive 4128 Steam Roller 蒸汽式压路机(最短路,变形) WA中。。。。。
题意: 给一个由n*m个正方形格子组成的矩形,其中每个格子的边都是可以走的,长度给定,规定:如果在进入该路前需要拐弯,或者走完该路需要拐弯,都是需要付出双倍距离的(每条路最多算2倍).问从起点到终点的 ...
- canvas绘制直线和多边形基本操作
<!DOCTYPE HTML> <html lang="en"> <body> <canvas id="canvas" ...
- hdu 2528:Area(计算几何,求线段与直线交点 + 求多边形面积)
Area Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- BZOJ 1091([SCOI2003]分割多边形-分割直线)
1091: [SCOI2003]分割多边形 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 223 Solved: 82 [Submit][id=10 ...
- 任意多边形切割/裁剪(附C#代码实现)
本实现主要参考了发表于2003年<软件学报>的<一个有效的多边形裁剪算法>(刘勇奎,高云,黄有群)这篇论文,所使用的理论与算法大都基于本文,对论文中部分阐述进行了详细解释,并提 ...
- opengl基础学习专题 (三) 多边形绘制的几种样式
题外话 聪明人之所以不会成功,是由于他们缺乏坚韧的毅力. ——艾萨克·牛顿(1643年1月4日—1727年3月31日)英国 也许可以理解为 想更深一步的时候,坚持,努力和聪明缺一不可. 挺直腰杆在此向 ...
随机推荐
- 前端面试——css篇
css盒子模型 在W3C模型中: 总宽度 = margin-left + border-left + padding-left + width + padding-right + border-rig ...
- gradient 线性渐变 浏览器兼容
filter: progid:DXImageTransform.Microsoft.gradient(GradientType=0, startColorstr=white, endColorstr= ...
- React Native 中组件的生命周期
概述 就像 Android 开发中的 View 一样,React Native(RN) 中的组件也有生命周期(Lifecycle).所谓生命周期,就是一个对象从开始生成到最后消亡所经历的状态,理解生命 ...
- 字符串匹配(hash算法)
hash函数对大家来说不陌生吧 ? 而这次我们就用hash函数来实现字符串匹配. 首先我们会想一下二进制数. 对于任意一个二进制数,我们将它化为10进制的数的方法如下(以二进制数1101101为例): ...
- MVC+EF 理解和实现仓储模式和工作单元模式
MVC+EF 理解和实现仓储模式和工作单元模式 原文:Understanding Repository and Unit of Work Pattern and Implementing Generi ...
- Bootstrap系列 -- 9. 表格
一. Bootstrap 表格样式支持 Bootstrap提供了六种不同风格的样式支持,其中一个基础样式,4个附件样式,1个响应式设计样式 1. .table:基础表格 2. .table-strip ...
- 20151023 - discuz 6 中 insenz 营销推广失效的问题
将很久之前的论坛重新放在网络上,发现首页打开非常慢,用 Web Inspector 检查,发现 insenz.com 已失效导致. 解决办法: 1.进入数据库:执行 SELECT * FROM cdb ...
- Bete冲刺第三阶段
Bete冲刺第三阶段 今日工作: web: 检索了各类资料,今日暂时顺利解决了hibernate懒加载异常的问题,采用的凡是也比较简单就是添加了一个OpenSessionInViewFilter的过滤 ...
- my-Life项目开发流程
一:新建java web项目 (懂得使用gradle哦!) 1.http://www.cnblogs.com/xylle/p/5234380.html 2.新建项目后,然后新建module, 如果甲 ...
- Android Intent应用
1. 显示Intent // 直接设置Content和到下一个的Actvity的名字 Intent i = new Intent(MainActivity.this, AnotherAty.class ...