题目大概说给一张有向图,每条边都有权值,要选若干条边使其形成若干个环且图上各个点都属于且只属于其中一个环,问选的边的最少权值和是多少。

各点出度=入度=1的图是若干个环,考虑用最小费用最大流:

  • 每个点拆成两点u和u'
  • 源点向u连容量1费用0的边,表示这个点的出度最多为1
  • u'向汇点连容量1费用0的边,表示这个点的入度最多为1
  • 对于原图上任何一条有向边<a,b,c>,a向b'连容量1费用c的边,选择这条边后a的出度+1,b的入度+1,费用+c

这样跑最小费用最大流,如果没满流就无解,否则MCMF就是最少权和。另外题目说2个点以上才能构成环,所以排除掉是自环的边就OK了,虽然不排除也能AC= =。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 222
#define MAXM 222*444
struct Edge{
int u,v,cap,cost,next;
}edge[MAXM];
int head[MAXN];
int NV,NE,vs,vt; void addEdge(int u,int v,int cap,int cost){
edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].u=v; edge[NE].v=u; edge[NE].cap=; edge[NE].cost=-cost;
edge[NE].next=head[v]; head[v]=NE++;
}
bool vis[MAXN];
int d[MAXN],pre[MAXN];
bool SPFA(){
for(int i=;i<NV;++i){
vis[i]=;
d[i]=INF;
}
vis[vs]=;
d[vs]=;
queue<int> que;
que.push(vs);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap && d[v]>d[u]+edge[i].cost){
d[v]=d[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=;
que.push(v);
}
}
}
vis[u]=;
}
return d[vt]!=INF;
}
int mxflow;
int MCMF(){
int res=;
mxflow=;
while(SPFA()){
int flow=INF,cost=;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
flow=min(flow,edge[pre[u]].cap);
}
mxflow+=flow;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
edge[pre[u]].cap-=flow;
edge[pre[u]^].cap+=flow;
cost+=flow*edge[pre[u]].cost;
}
res+=cost;
}
return res;
} int main(){
int n,m,a,b,c;
while(~scanf("%d%d",&n,&m)){
vs=; vt=n*+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
addEdge(vs,i,,);
addEdge(i+n,vt,,);
}
while(m--){
scanf("%d%d%d",&a,&b,&c);
if(a==b) continue;
addEdge(a,b+n,,c);
}
mxflow=;
int ans=MCMF();
if(mxflow!=n) ans=-;
printf("%d\n",ans);
}
return ;
}

HDU1853 Cyclic Tour(最小费用最大流)的更多相关文章

  1. hdu 1853 Cyclic Tour 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...

  2. TZOJ 1513 Farm Tour(最小费用最大流)

    描述 When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 &l ...

  3. Farm Tour(最小费用最大流模板)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18150   Accepted: 7023 Descri ...

  4. POJ2135 Farm Tour —— 最小费用最大流

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  5. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

  6. poj 2135 Farm Tour 最小费用最大流建图跑最短路

    题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...

  7. POJ 2135 Farm Tour [最小费用最大流]

    题意: 有n个点和m条边,让你从1出发到n再从n回到1,不要求所有点都要经过,但是每条边只能走一次.边是无向边. 问最短的行走距离多少. 一开始看这题还没搞费用流,后来搞了搞再回来看,想了想建图不是很 ...

  8. [poj] 1235 Farm Tour || 最小费用最大流

    原题 费用流板子题. 费用流与最大流的区别就是把bfs改为spfa,dfs时把按deep搜索改成按最短路搜索即可 #include<cstdio> #include<queue> ...

  9. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

随机推荐

  1. [Android Pro] Dangerous permissions and permission groups.

    Permission Group Permissions CALENDAR READ_CALENDAR WRITE_CALENDAR CAMERA CAMERA CONTACTS READ_CONTA ...

  2. 最长公共上升子序列(codevs 2185)

    题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了. 小沐沐说,对 ...

  3. 合唱队形2(洛谷U5874)

    题目背景 上次老师挑出来的(N-K)位同学很不高兴,于是他们准备自己组建合唱队形.他们请了kkk来帮忙. 题目描述 他们安排了一个动作--手拉着手唱一首歌(就是他们围成一个圈).如果有两个相邻的同学的 ...

  4. AppStore下载失败使用已购页面再试一次解决方法

    AppStore载失败 使用已购页面再试一次解决方法 工具/原料 Mac OS 方法/步骤 1.大家可以先试试更改系统 DNS 的方法,由于苹果的 App Store 应用商店在国外,所以 DNS 如 ...

  5. 55. Jump Game leetcode

    55. Jump Game Total Accepted: 95819 Total Submissions: 330538 Difficulty: Medium Given an array of n ...

  6. poj1733(种类并查集+离散化)

    题目链接: http://poj.org/problem?id=1733 题意: 输入n表示有一个长度为n的0,1字符串, m表示接下来有m行输入, 接下来的m行输入中x, y, even表示第x到第 ...

  7. Index on DB2 for z/OS: DB2 for z/OS 的索引

    可以创建在任何表上的索引: Unique Index:An index that ensures that the value in a particular column or set of col ...

  8. 三、jQuery--jQuery基础--jQuery基础课程--第12章 jQuery在线聊天室

    在线聊天室案例 一.功能简介: 1.用户需要登录后才能进入聊天室交流 2.已无刷新的方式,动态展示交流后的内容和在线人员的基本信息 3.登录后的用户可以提交文字和表情图标 技术重点:利用ajax的无刷 ...

  9. MVC公开课 – 2.查询,删除 (2013-3-15广州传智MVC公开课)

    查询 /Controller/HomeController.cs /// <summary> /// 查询 文章 列表 /// </summary> /// <retur ...

  10. 发现一php木马代码

    <?php ;//无需验证密码! $shellname='hello~地球~猴子星球欢迎你 '; define('myaddress',__FILE__); error_reporting(E_ ...