解决JS浮点数(小数)计算加减乘除的BUG
在JavaScript中输出下面这些数值(注意不能作为字符串输出):0.1000000000000000000000000001(28位小数)、0.100000000000000000000000001(27位小数)、0.1000000000000000000000000456(28位小数)、0.09999999999999999999999(23位小数),显示出来的结果都是数值0.1。又如,如果输出1/3的有理数表达式,结果是0.3333333333333333。 document.write(.1 + .2) // 0.3000000000000004
document.write(.3 + .6) // 0.8999999999999999
Some statistics related to this famous double precision question. I used this code.
When adding all values (a+b) using a step of 0.1 (from 0.1 to 100) we have ~15% chance of precision error. Here are some examples (for full .txt results here):
0.1 + 0.2 = 0.30000000000000004
0.1 + 0.7 = 0.7999999999999999
...
1.7 + 1.9 = 3.5999999999999996
1.7 + 2.2 = 3.9000000000000004
...
3.2 + 3.6 = 6.800000000000001
3.2 + 4.4 = 7.6000000000000005
When subtracting all values (a-b where a>b) using a step of 0.1 (from 100 to 0.1) we have ~34% chance of precision error. Here are some examples (for full .txt results here):
0.6 - 0.2 = 0.39999999999999997
0.5 - 0.4 = 0.09999999999999998
...
2.1 - 0.2 = 1.9000000000000001
2.0 - 1.9 = 0.10000000000000009
...
100 - 99.9 = 0.09999999999999432
100 - 99.8 = 0.20000000000000284
*I was surprised with these 15% and 34%.. they are huge, so always use BigDecimal when precision is of big importance. With 2 decimal digits (step 0.01) the situation worsens a bit more (18% and 36%).

1 /**
2 ** 加法函数,用来得到精确的加法结果
3 ** 说明:javascript的加法结果会有误差,在两个浮点数相加的时候会比较明显。这个函数返回较为精确的加法结果。
4 ** 调用:accAdd(arg1,arg2)
5 ** 返回值:arg1加上arg2的精确结果
6 **/
7 function accAdd(arg1, arg2) {
8 var r1, r2, m, c;
9 try {
10 r1 = arg1.toString().split(".")[1].length;
11 }
12 catch (e) {
13 r1 = 0;
14 }
15 try {
16 r2 = arg2.toString().split(".")[1].length;
17 }
18 catch (e) {
19 r2 = 0;
20 }
21 c = Math.abs(r1 - r2);
22 m = Math.pow(10, Math.max(r1, r2));
23 if (c > 0) {
24 var cm = Math.pow(10, c);
25 if (r1 > r2) {
26 arg1 = Number(arg1.toString().replace(".", ""));
27 arg2 = Number(arg2.toString().replace(".", "")) * cm;
28 } else {
29 arg1 = Number(arg1.toString().replace(".", "")) * cm;
30 arg2 = Number(arg2.toString().replace(".", ""));
31 }
32 } else {
33 arg1 = Number(arg1.toString().replace(".", ""));
34 arg2 = Number(arg2.toString().replace(".", ""));
35 }
36 return (arg1 + arg2) / m;
37 }
38
39 //给Number类型增加一个add方法,调用起来更加方便。
40 Number.prototype.add = function (arg) {
41 return accAdd(arg, this);
42 };


1 /**
2 ** 减法函数,用来得到精确的减法结果
3 ** 说明:javascript的减法结果会有误差,在两个浮点数相减的时候会比较明显。这个函数返回较为精确的减法结果。
4 ** 调用:accSub(arg1,arg2)
5 ** 返回值:arg1加上arg2的精确结果
6 **/
7 function accSub(arg1, arg2) {
8 var r1, r2, m, n;
9 try {
10 r1 = arg1.toString().split(".")[1].length;
11 }
12 catch (e) {
13 r1 = 0;
14 }
15 try {
16 r2 = arg2.toString().split(".")[1].length;
17 }
18 catch (e) {
19 r2 = 0;
20 }
21 m = Math.pow(10, Math.max(r1, r2)); //last modify by deeka //动态控制精度长度
22 n = (r1 >= r2) ? r1 : r2;
23 return ((arg1 * m - arg2 * m) / m).toFixed(n);
24 }
25
26 // 给Number类型增加一个mul方法,调用起来更加方便。
27 Number.prototype.sub = function (arg) {
28 return accMul(arg, this);
29 };


1 /**
2 ** 乘法函数,用来得到精确的乘法结果
3 ** 说明:javascript的乘法结果会有误差,在两个浮点数相乘的时候会比较明显。这个函数返回较为精确的乘法结果。
4 ** 调用:accMul(arg1,arg2)
5 ** 返回值:arg1乘以 arg2的精确结果
6 **/
7 function accMul(arg1, arg2) {
8 var m = 0, s1 = arg1.toString(), s2 = arg2.toString();
9 try {
10 m += s1.split(".")[1].length;
11 }
12 catch (e) {
13 }
14 try {
15 m += s2.split(".")[1].length;
16 }
17 catch (e) {
18 }
19 return Number(s1.replace(".", "")) * Number(s2.replace(".", "")) / Math.pow(10, m);
20 }
21
22 // 给Number类型增加一个mul方法,调用起来更加方便。
23 Number.prototype.mul = function (arg) {
24 return accMul(arg, this);
25 };


1 /**
2 ** 除法函数,用来得到精确的除法结果
3 ** 说明:javascript的除法结果会有误差,在两个浮点数相除的时候会比较明显。这个函数返回较为精确的除法结果。
4 ** 调用:accDiv(arg1,arg2)
5 ** 返回值:arg1除以arg2的精确结果
6 **/
7 function accDiv(arg1, arg2) {
8 var t1 = 0, t2 = 0, r1, r2;
9 try {
10 t1 = arg1.toString().split(".")[1].length;
11 }
12 catch (e) {
13 }
14 try {
15 t2 = arg2.toString().split(".")[1].length;
16 }
17 catch (e) {
18 }
19 with (Math) {
20 r1 = Number(arg1.toString().replace(".", ""));
21 r2 = Number(arg2.toString().replace(".", ""));
22 return (r1 / r2) * pow(10, t2 - t1);
23 }
24 }
25
26 //给Number类型增加一个div方法,调用起来更加方便。
27 Number.prototype.div = function (arg) {
28 return accDiv(this, arg);
29 };

function strip(number) {
return (parseFloat(number.toPrecision(12)));
}
Using 'toPrecision(12)' leaves trailing zeros which 'parseFloat()' removes. Assume it is accurate to plus/minus one on the least significant digit.
定义和用法
toPrecision() 方法可在对象的值超出指定位数时将其转换为指数计数法。
语法
NumberObject.toPrecision(num)
参数 | 描述 |
---|---|
num | 必需。规定必须被转换为指数计数法的最小位数。该参数是 1 ~ 21 之间(且包括 1 和 21)的值。有效实现允许有选择地支持更大或更小的 num。如果省略了该参数,则调用方法 toString(),而不是把数字转换成十进制的值。 |
返回值
返回 NumberObject 的字符串表示,包含 num 个有效数字。如果 num 足够大,能够包括 NumberObject 整数部分的所有数字,那么返回的字符串将采用定点计数法。否则,采用指数计数法,即小数点前有一位数字,小数点后有 num-1 位数字。必要时,该数字会被舍入或用 0 补足。
抛出
当 num 太小或太大时抛出异常 RangeError。1 ~ 21 之间的值不会引发该异常。有些实现支持更大范围或更小范围内的值。
当调用该方法的对象不是 Number 时抛出 TypeError 异常。
实例
在本例中,我们将把一个数字转换为指数计数法:
Show 10,000 as an exponential notation:
<script type="text/javascript">
var num = new Number(10000);
document.write (num.toPrecision(4))
</script>
输出:
Show 10,000 as an exponential notation:
1.000e+4 同时还可以使用一个https://github.com/MikeMcl/bignumber.js 插件来完成JS精度运算的BUG
Faster, smaller, and perhaps easier to use than JavaScript versions of Java's BigDecimal
8 KB minified and gzipped
Simple API but full-featured
Works with numbers with or without fraction digits in bases from 2 to 64 inclusive
Replicates the toExponential, toFixed, toPrecision and toString methods of JavaScript's Number type
Includes a toFraction and a correctly-rounded squareRoot method
Supports cryptographically-secure pseudo-random number generation
No dependencies
Wide platform compatibility: uses JavaScript 1.5 (ECMAScript 3) features only
Comprehensive documentation and test set
API
If a smaller and simpler library is required see big.js. It's less than half the size but only works with decimal numbers and only has half the methods. It also does not allow NaN or Infinity, or have the configuration options of this library.
Use
In all examples below, var, semicolons and toString calls are not shown. If a commented-out value is in quotes it means toString has been called on the preceding expression.
The library exports a single function: BigNumber, the constructor of BigNumber instances.
It accepts a value of type number (up to 15 significant digits only), string or BigNumber object,
x = new BigNumber(123.4567)
y = BigNumber('123456.7e-3')
z = new BigNumber(x)
x.equals(y) && y.equals(z) && x.equals(z) // true
and a base from 2 to 64 inclusive can be specified.
x = new BigNumber(1011, 2) // "11"
y = new BigNumber('zz.9', 36) // "1295.25"
z = x.plus(y) // "1306.25"
A BigNumber is immutable in the sense that it is not changed by its methods.
0.3 - 0.1 // 0.19999999999999998
x = new BigNumber(0.3)
x.minus(0.1) // "0.2"
x // "0.3"
The methods that return a BigNumber can be chained.
x.dividedBy(y).plus(z).times(9).floor()
x.times('1.23456780123456789e+9').plus(9876.5432321).dividedBy('4444562598.111772').ceil()
Many method names have a shorter alias.
x.squareRoot().dividedBy(y).toPower(3).equals(x.sqrt().div(y).pow(3)) // true
x.cmp(y.mod(z).neg()) == 1 && x.comparedTo(y.modulo(z).negated()) == 1 // true
Like JavaScript's number type, there are toExponential, toFixed and toPrecision methods
x = new BigNumber(255.5)
x.toExponential(5) // "2.55500e+2"
x.toFixed(5) // "255.50000"
x.toPrecision(5) // "255.50"
x.toNumber() // 255.5
and a base can be specified for toString.
x.toString(16) // "ff.8"
There is also a toFormat method which may be useful for internationalisation
y = new BigNumber('1234567.898765')
y.toFormat(2) // "1,234,567.90"
The maximum number of decimal places of the result of an operation involving division (i.e. a division, square root, base conversion or negative power operation) is set using the config method of the BigNumber constructor.
The other arithmetic operations always give the exact result.
BigNumber.config({ DECIMAL_PLACES: 10, ROUNDING_MODE: 4 })
// Alternatively, BigNumber.config( 10, 4 );
x = new BigNumber(2);
y = new BigNumber(3);
z = x.div(y) // "0.6666666667"
z.sqrt() // "0.8164965809"
z.pow(-3) // "3.3749999995"
z.toString(2) // "0.1010101011"
z.times(z) // "0.44444444448888888889"
z.times(z).round(10) // "0.4444444445"
There is a toFraction method with an optional maximum denominator argument
y = new BigNumber(355)
pi = y.dividedBy(113) // "3.1415929204"
pi.toFraction() // [ "7853982301", "2500000000" ]
pi.toFraction(1000) // [ "355", "113" ]
and isNaN and isFinite methods, as NaN and Infinity are valid BigNumber values.
x = new BigNumber(NaN) // "NaN"
y = new BigNumber(Infinity) // "Infinity"
x.isNaN() && !y.isNaN() && !x.isFinite() && !y.isFinite() // true
The value of a BigNumber is stored in a decimal floating point format in terms of a coefficient, exponent and sign.
x = new BigNumber(-123.456);
x.c // [ 123, 45600000000000 ] coefficient (i.e. significand)
x.e // 2 exponent
x.s // -1 sign
Multiple BigNumber constructors can be created, each with their own independent configuration which applies to all BigNumber's created from it.
// Set DECIMAL_PLACES for the original BigNumber constructor
BigNumber.config({ DECIMAL_PLACES: 10 })
// Create another BigNumber constructor, optionally passing in a configuration object
BN = BigNumber.another({ DECIMAL_PLACES: 5 })
x = new BigNumber(1)
y = new BN(1)
x.div(3) // '0.3333333333'
y.div(3) // '0.33333'
For futher information see the API reference in the doc directory.
解决JS浮点数(小数)计算加减乘除的BUG的更多相关文章
- 解决JavaScript浮点数(小数) 运算出现Bug的方法
解决JS浮点数(小数) 运算出现Bug的方法例如37.2 * 5.5 = 206.08 就直接用JS算了一个结果为: 204.60000000000002 怎么会这样, 两个只有一位小数的数字相乘, ...
- 学以致用:手把手教你撸一个工具库并打包发布,顺便解决JS浮点数计算精度问题
本文讲解的是怎么实现一个工具库并打包发布到npm给大家使用.本文实现的工具是一个分数计算器,大家考虑如下情况: \[ \sqrt{(((\frac{1}{3}+3.5)*\frac{2}{9}-\fr ...
- 封装加减乘除函数 解决JS 浮点数计算 Bug
计算机内部的信息都是由二进制方式表示的,即0和1组成的各种编码,但由于某些浮点数没办法用二进制准确的表示出来,也就带来了一系列精度问题.当然这也不是JS独有的问题. 例如, 我们在用JS做浮点运算会遇 ...
- js浮点数的计算
js在计算浮点数时可能不够准确,会产生舍入误差的问题,这是使用基于IEEE745数值的浮点计算的通病,并非ECMAScript一家,其他使用相同数值格式的语言也存在这个问题. 这里讲一 ...
- Javascript优化后的加减乘除(解决js浮点数计算bug)
function add(a, b) { var c, d, e; try { c = a.toString().split(".")[1].length; } catch (f) ...
- 解决js浮点数计算bug
1.加 function add(a, b) { var c, d, e; try { c = a.toString().split(".")[1].length; } catch ...
- js 浮点小数计算精度问题 parseFloat 精度问题
在js中进行以元为单位进行金额计算时 使用parseFloat会产生精度问题 var price = 10.99; var quantity = 7; var needPay = parseFloat ...
- js浮点数的计算总结
在js浮点值的计算中,很多时候会出现不准确的情况,如下面的情况 console.log(2.2 + 2.1) // 4.300000000000001 console.log(2.2 - 1.9) / ...
- 有效解决js中添加border后动画bug问题
做了个demo发现如果一个div不加border属性,用对象的offsetWidth属性来控制width没问题,但是如果一旦加了border属性,问题就来了. 其实offsetWidth属性获取的的是 ...
随机推荐
- MVC - 20.前台ajax分页
1.用pager方法,输入参数,会返回一个导航条的html字符串.方法的内部比较简单. ajax-pager.js /** * pageSize, 每页显示数 * pageIndex, 当前页数 * ...
- .net学习之Attribute特性和EF关键知识点
一.Attribute特性/标签1.Attribute用来对类.属性.方法等标注额外的信息,贴一个标签简单的说,定制特性Attribute,本质上就是一个类,它为目标元素提供关联附加信息,并在运行时以 ...
- Shell编程基础教程7--脚本参数的传递
7.脚本参数的传递 7.1.shift命令 简介: shift n 每次将参数位置向左偏移n位 例子 #!/bin/bash us ...
- 发现一php木马代码
<?php ;//无需验证密码! $shellname='hello~地球~猴子星球欢迎你 '; define('myaddress',__FILE__); error_reporting(E_ ...
- 无废话ExtJs 入门教程十二[下拉列表联动:Combobox_Two]
无废话ExtJs 入门教程十二[下拉列表联动:Combobox_Two] extjs技术交流,欢迎加群(201926085) 不管是几级下拉列表的联动实现本质上都是根据某个下拉列表的变化,去动态加载其 ...
- 使用Mybatis-Generator自动生成Dao、Model、Mapping相关文件(转)
Mybatis属于半自动ORM,在使用这个框架中,工作量最大的就是书写Mapping的映射文件,由于手动书写很容易出错,我们可以利用Mybatis-Generator来帮我们自动生成文件. 1.相关文 ...
- Centos6.5里安装Erlang 并安装riak
一.Erlang安装: 1 首先进入www.erlang.org 下载页面,下载otp_src_17.5.tar.gz. IT网,http://www.it.net.cn 2 解压缩:tar -xzv ...
- Oracle 【IT实验室】数据库备份与恢复之:如何对Oracle数据库文件进行恢复与备份
任何数据库在长期使用过程中,都会存在一定的安全隐患.对于数据库管理员来说不能仅寄希望于计算机操作系统的安全运行,而是要建立一整套的数据库备份与恢复机制.当数据库发生故障后,希望能重新建立一个完整的数据 ...
- 在source insight中集成astyle
转自:http://www.cnblogs.com/xuxm2007/archive/2013/04/06/3002390.html 好吧,我有代码格式的强迫症,代码不整齐,我看的都头疼,之前一直喜欢 ...
- EditPlus+VisualStudio配置VC简易开发环境环境
对于C++开发, 我想在Windows下大家用的最多的应该是MS的VC++.但其强大的功能背后却有着"启动速度慢","占用资源多"的缺点,尤其是VS后 ...