Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序
Time Limit: 2000MS | Memory Limit: 65536K | |
Description
to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair
of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?
Input
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.
Output
Sample Input
- 1
- 3 3
- 1 2
- 2 3
- 3 1
Sample Output
- Yes
Source
题意:jiajia有一个洞穴,洞穴中有n个房间,房间的连接是有方向的,jiajia想知道u与v之间是不是有路径u->v或v->u
思路:单连通问题,首先将图中的强连通的部分进行缩点,构成一颗树,接下来拓扑排序,判断拓扑排序的两点之间是不是有边,如果没有边则图不符合要求。
- #include <cstdio>
- #include <cstring>
- #include <cstdlib>
- #include <cmath>
- #include <stack>
- #include <queue>
- #include <algorithm>
- using namespace std;
- const int Max = 1100;
- const int INF = 0x3f3f3f3f;
- typedef struct node
- {
- int v;
- int next;
- }Line ;
- Line Li[Max*6];
- int Head[Max],top;
- int Map[Max][Max];
- int Du[Max],pre[Max];
- int vis1[Max],dfn[Max],low[Max];
- bool vis2[Max];
- int dep;
- int Point[Max*5][2],Num;
- int topo[Max],num;
- int a[Max],ToNum;
- stack < int >S;
- void AddEdge(int u,int v)
- {
- Li[top].v = v; Li[top].next = Head[u];
- Head[u] = top++;
- }
- int Find(int x)
- {
- return pre[x]==-1?x:pre[x] = Find(pre[x]);
- }
- void Tarjan(int u) //强连通缩点
- {
- dfn[u] = low[u] = dep++;
- vis1[u] = 1;
- S.push(u);
- for(int i=Head[u];i!=-1;i=Li[i].next)
- {
- if(vis1[Li[i].v]==1)
- {
- low[u]=min(low[u],dfn[Li[i].v]);
- }
- if(vis1[Li[i].v]==0)
- {
- Tarjan(Li[i].v);
- low[u]=min(low[u],low[Li[i].v]);
- }
- if(vis2[Li[i].v])
- {
- Point[Num][0]=u;
- Point[Num++][1]=Li[i].v;
- }
- }
- if(low[u]==dfn[u]) //如果low[u]==dfn[u],则说明是强连通的根节点。
- {
- vis2[u]=true;
- topo[num++] = u;
- while(1)
- {
- if(S.empty())
- {
- break;
- }
- int v = S.top();
- S.pop();
- vis1[v]=2;
- if(v==u)
- {
- break;
- }
- pre[v]=u;
- }
- }
- }
- void Toposort()//BFS拓扑排序
- {
- queue<int>Q;
- for(int i=0;i<num;i++)
- {
- if(Du[topo[i]]==0)
- {
- Q.push(topo[i]);
- }
- }
- while(!Q.empty())
- {
- int u=Q.front();
- a[ToNum++]=u;
- Q.pop();
- for(int i=0;i<num;i++)
- {
- if(Map[u][topo[i]])
- {
- Du[topo[i]]--;
- if(Du[topo[i]]==0)
- {
- Q.push(topo[i]);
- }
- }
- }
- }
- }
- int main()
- {
- int T;
- int n,m;
- scanf("%d",&T);
- while(T--)
- {
- scanf("%d %d",&n,&m);
- top = 0;
- memset(Head,-1,sizeof(Head));
- int u,v;
- for(int i=0;i<m;i++)
- {
- scanf("%d %d",&u,&v);
- AddEdge(u,v);
- }
- memset(vis1,0,sizeof(vis1));
- memset(Map,0,sizeof(Map));
- memset(vis2,false,sizeof(vis2));
- memset(Du,0,sizeof(Du));
- memset(pre,-1,sizeof(pre));
- dep = 0; Num =0 ;num = 0;
- while(!S.empty())
- {
- S.pop();
- }
- for(int i=1;i<=n;i++)
- {
- if(vis1[i]==0)
- {
- Tarjan(i);
- }
- }
- for(int i=0;i<Num;i++)
- {
- int x = Find(Point[i][0]);
- int y = Find(Point[i][1]);
- Map[x][y]=1;
- Du[y]++;
- }
- ToNum = 0;
- Toposort();
- bool flag=false;
- for(int i=0;i<ToNum-1;i++)
- {
- if(!Map[a[i]][a[i+1]])//判断相邻的是不是存在边
- {
- flag=true;
- break;
- }
- }
- if(flag)
- {
- printf("No\n");
- }
- else
- {
- printf("Yes\n");
- }
- }
- return 0;
- }
Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序的更多相关文章
- POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)
这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...
- POJ 2762 Going from u to v or from v to u? (强连通分量缩点+拓扑排序)
题目链接:http://poj.org/problem?id=2762 题意是 有t组样例,n个点m条有向边,取任意两个点u和v,问u能不能到v 或者v能不能到u,要是可以就输出Yes,否则输出No. ...
- poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】
Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15812 ...
- POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)
[题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...
- Java实现判断单联通(强连通缩点+拓扑排序)Going from u to v or from v to u
Description In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has ...
- POJ2762 Going from u to v or from v to u? 强连通分量缩点+拓扑排序
题目链接:https://vjudge.net/contest/295959#problem/I 或者 http://poj.org/problem?id=2762 题意:输入多组样例,输入n个点和m ...
- Oracle基本数据字典:v$database、v$instance、v$version、dba_objects
v$database: 视图结构: SQL> desc v$database; Name Null? Type - ...
- POJ2762 Going from u to v or from v to u(单连通 缩点)
判断图是否单连通,先用强连通分图处理,再拓扑排序,需注意: 符合要求的不一定是链拓扑排序列结果唯一,即在队列中的元素始终只有一个 #include<cstdio> #include< ...
- 临时文件相关的v$tempfile v$sort_usage与V$tempseg_usage
SQL> select username,user,segtype,segfile#,segblk#,extents,segrfno# from v$sort_usage; SEGFILE#代表 ...
随机推荐
- bootstrap 不兼容ie8 的问题
官方推荐的脚手架中,其实已经包含着解决方案:html5shiv.min.js .Respond.min.js 但由于respond.js 使用 file:// 协议,IE8 是无法调起本地文件的 ...
- free一个无效指针
1. 错误描述: 刚才写了一个删除单链表的结点函数, 参数是 指向链表的指针和链表中指定删除的结点的指针. 当我free这个待删除的结点, 结果报错. 2. 为什么会报错? 我查了查MSDN, ...
- PG, Pool之间的一些数量关系
先说一下我的环境: Ceph cluster中包含6台OSD节点 (osd.0 - 5), 一共有10个Pool (0 - 9), 这些Pool共享了144个PG (这个数字是所有Pool的PG_SI ...
- Solved Unable to copy the source file ./installer/services.sh to the destination file /etc/vmware-t
Sometimes when you intall vmwaretools there will be some problems such as "Unable to copy the s ...
- c# 文件遍历
DirectoryInfo TheFolder=new DirectoryInfo(folderFullName); //遍历文件夹 foreach(DirectoryInfo NextFolder ...
- Android MP3录音实现
给APP做语音功能,必须考虑到IOS和Android平台的通用性.wav录音质量高,文件太大,AAC和AMR格式在IOS平台却不支持,所以采用libmp3lame把AudioRecord音频流直接转换 ...
- 一个相比jdk的io包更方便处理数据读写的包
apche的commons-io.jar包,里面有个类IOUtils,提供的下列方法: readLines方法能够从字节输入流或字符输入流里读取数据,按行读,返回字符串组成的list write方法能 ...
- 【C++】int、const char*、char*、char、string之间的转换
#include "stdafx.h" #include<string> #include<vector> #include<iostream> ...
- 用Appium进行android自动化测试
appium是开源的移动端自动化测试框架,可以测试ios,android应用.appium让移动端自动化测试不必限定在某种语言和某个具体的框架:也就是说任何人都可以使用自己最熟悉最顺手的语言以及框架来 ...
- iOS:命令行方式使用OSChina托管私有代码
一.介绍 在项目开发中,使用版本控制工具是必不可少的开发工具,它可以帮助我们程序员写完代码后及时提交备份,防止因个人操作导致代码被误删除了或者丢失了,安全可靠.同时,使用版本控制器工具也可以很方便的进 ...