Smallest Bounding Rectangle

Given the Cartesian coordinates of n(>0)2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).

Input

The input le may contain multiple test cases. Each test case begins with a line containing a positive

integer n(<1001) indicating the number of points in this test case. Then follows n lines each containing

two real numbers giving respectively the x - and y

-coordinates of a point. The input terminates with a

test case containing a value 0 for n which must not be processed.

Output

For each test case in the input print a line containing the area of the smallest bounding rectangle

rounded to the 4th digit after the decimal point.

Sample Input

3

-3.000 5.000

7.000 9.000

17.000 5.000

4

10.000 10.000

10.000 20.000

20.000 20.000

20.000 10.000

0

Sample Output

80.0000

100.0000

最小外接矩形,不会简单的方法,只能将所给点构成凸包,然后枚举凸包上相邻的两点与x轴的夹角作为矩形的倾斜角c,然后求出沿倾斜角c的方向上的凸包映射的长度和垂直倾斜角c的方向上的映射长度为矩形的长和宽.

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <vector>
#include <map>
#include <algorithm>
#define LL long long using namespace std; const int INF = 0x3f3f3f3f; const int Max = 1011; const double eps = 1e-8; const double Pi = acos(-1.0); int sgn(double x)//精度处理
{
if(fabs(x)<eps)
{
return 0;
}
if(x<0)
{
return -1;
}
else
{
return 1;
}
} struct Point
{
double x,y;
Point() {};
Point(double _x,double _y)
{
x=_x;
y=_y;
}
Point operator - (const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^ (const Point &b)const
{
return x*b.y-y*b.x;
}
double operator * (const Point &b)const
{
return x*b.x+y*b.y;
}
void transXY(double B)
{
double tx = x,ty=y;
x =tx*cos(B)-ty*sin(B);
y = tx*sin(B)+ty*cos(B);
}
} List[Max]; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
int Stack[Max],top; bool _cmp(Point p1,Point p2)//极角排序
{
double tmp = (p1-List[0])^(p2-List[0]);
if(sgn(tmp)>0)
{
return true;
}
else if(sgn(tmp)==0 && sgn(dist(p1,List[0])-dist(p2,List[0]))<=0)
{
return true;
}
else
{
return false;
}
} void Graham(int n)//凸包
{
Point p0;
int k = 0;
p0=List[0];
for(int i=1; i<n; i++)
{
if((p0.y>List[i].y)||(p0.y==List[i].y&&p0.x>List[i].x))
{
p0=List[i];
k=i;
}
}
swap(List[k],List[0]);
sort(List+1,List+n,_cmp);
if(n==1)
{
top=1;
Stack[0]=0;
return ;
}
if(n==2)
{
top= 2 ;
Stack[0]=0;
Stack[1]=1;
return ;
}
Stack[0]= 0 ;
Stack[1]=1;
top=2;
for(int i=2; i<n; i++)
{
while(top>1&&sgn((List[Stack[top-1]]-List[Stack[top-2]])^(List[i]-List[Stack[top-2]]))<=0)
top--;
Stack[top++]=i;
}
} double Get(int n)//计算矩形的最小面积
{
double ant,ans ,dis ;
double x,y;
double sum = INF;
Point a;
for(int i=0; i<n; i++)
{
a=List[Stack[(i+1)%n]]-List[Stack[i]];
ant = atan2(a.y,a.x);//倾斜角
x = 0;
y = 0;
for(int j=0; j<n; j++)
{
a=List[Stack[(j+1)%n]]-List[Stack[j]];
dis =sqrt(a.x*a.x+a.y*a.y);
ans = atan2(a.y,a.x);
x+=fabs(dis*sin(ans-ant));//映射总和
y+=fabs(dis*cos(ans-ant));//映射总和
}
sum = min(x*y,sum);
}
return sum/4; }
int main()
{
int n;
while(scanf("%d",&n)&&n)
{
top = 0;
for(int i=0; i<n; i++)
{
scanf("%lf %lf",&List[i].x,&List[i].y);
}
Graham(n); printf("%.4f\n",Get(top));
} return 0;
}

Smallest Bounding Rectangle - uva10173的更多相关文章

  1. 此坑待填 离散化思想和凸包 UVA - 10173 Smallest Bounding Rectangle

    Smallest Bounding Rectangle Given the Cartesian coordinates of n(>0)2-dimensional points, write a ...

  2. UVA10173 Smallest Bounding Rectangle 最小面积矩形覆盖

    \(\color{#0066ff}{题目描述}\) 给定n(>0)二维点的笛卡尔坐标,编写一个程序,计算其最小边界矩形的面积(包含所有给定点的最小矩形). 输入文件可以包含多个测试样例.每个测试 ...

  3. UVA 12307 Smallest Enclosing Rectangle

    https://vjudge.net/problem/UVA-12307 求覆盖所有点的最小矩形面积.周长 相当于求凸包的最小面积外接矩形.最小周长外接矩形 结论: 这个矩形一定有一条边和凸包上一条边 ...

  4. UVA 12307 Smallest Enclosing Rectangle(旋转卡壳)

    题意:给你一些点,找出两个可以包含所有点的矩形,一个保证矩形面积最小,一个保证矩形周长最小,输出两个最小值 题解:首先根据所有点求一个凸包,再在这个凸包上枚举每条边,作为矩形的一条边(这样可以保证最小 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  7. Smallest Rectangle Enclosing Black Pixels

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  8. LeetCode Smallest Rectangle Enclosing Black Pixels

    原题链接在这里:https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/ 题目: An image is rep ...

  9. 302. Smallest Rectangle Enclosing Black Pixels

    题目: An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The b ...

随机推荐

  1. HTML静态网页 Window.document对象

    一.找到元素: docunment.getElementById("id"):根据id找,最多找一个:    var a =docunment.getElementById(&qu ...

  2. thinkphp框架验证码验证一次

    做异步验证验证码,只要验证一次结果正确,拿相同的值再次来对比,返回结果就不正确.我看到论坛中有人说,tp框架只要验证过一次正确后验证码就销毁了.确实是这个效果,但具体的还没深入了解

  3. 导出所选行为excle

    要实现的是将所选行导出.例如勾选这两条

  4. 2016HUAS暑假集训训练2 E - I Hate It

    Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老 ...

  5. javascript:正则大全

    :replace函数,为写自己的js模板做准备 待完善 function 1,声明&用法 //数组: var arr=[];//字面量 var arr=new Array();//构造函数 / ...

  6. ExtJS笔记 Reader

    Readers are used to interpret data to be loaded into a Model instance or a Store - often in response ...

  7. Android NDK开发之Jni调用Java对象

    https://my.oschina.net/zhiweiofli/blog/114064 通过使用合适的JNI函数,你可以创建Java对象,get.set 静态(static)和 实例(instan ...

  8. iOS开发-Masonry简易教程

    关于iOS布局自动iPhone6之后就是AutoLayOut,AutoLayOut固然非常好用,不过有时候我们需要在页面手动进行页面布局,VFL算是一种选择,如果对VFL不是很熟悉可以参考iOS开发- ...

  9. idea使用心得(1)-快捷键用法

    快捷键: Ctrl+F12,可以显示当前文件的结构,Alt+7,可在左侧生成固定框体控件,适合类复杂的情况 Ctrl+Alt+O,优化导入的类和包 Ctrl+X,删除行 删除光标所在的哪一行,对尤其是 ...

  10. iOS:融云即时通讯快速集成

    一.介绍 即时通讯在众多社交软件.生活软件以及教育软件中已经是必备的功能了,在当前国内,即时通讯SDK做的比较不错的有那么几家,例如环信SDK.融云SDK...,这两家做的都很不错,各有千秋吧,要是真 ...