作业三:CART回归树

20大数据三班 博客链接
学号 201613336

问题一:

表1为拖欠贷款人员训练样本数据集,使用CART算法基于该表数据构造决策树模型,并使用表2中测试样本集确定剪枝后的最优子树。

问题二

要求

1.以上两题写出详细的计算步骤;

2.以上两题在作业本上完成后拍照上传。

问题一的解决方案:

问题二的解决方案

1、代码
点击查看代码
#author:qiao_px
#@Time 2022/11/2 12:29
#@File 作业三.py
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn import linear_model # Data set
x = np.array(list(range(1, 11))).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05]).ravel() # Fit regression model
model1 = DecisionTreeRegressor(max_depth=1)
model2 = DecisionTreeRegressor(max_depth=3)
model3 = linear_model.LinearRegression()
model1.fit(x, y)
model2.fit(x, y)
model3.fit(x, y) # Predict
X_test = np.arange(0.0, 10.0, 0.01)[:, np.newaxis]
y_1 = model1.predict(X_test)
y_2 = model2.predict(X_test)
y_3 = model3.predict(X_test) # Plot the results
plt.figure()
plt.scatter(x, y, s=20, edgecolor="black",
c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue",
label="max_depth=1", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=3", linewidth=2)
plt.plot(X_test, y_3, color='red', label='liner regression', linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()
2、运行结果图

3、作业本手算过程

作业三:CART回归树的更多相关文章

  1. 大白话5分钟带你走进人工智能-第二十六节决策树系列之Cart回归树及其参数(5)

                                                    第二十六节决策树系列之Cart回归树及其参数(5) 上一节我们讲了不同的决策树对应的计算纯度的计算方法, ...

  2. 机器学习实战---决策树CART回归树实现

    机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我 ...

  3. CART回归树

    决策树算法原理(ID3,C4.5) 决策树算法原理(CART分类树) 决策树的剪枝 CART回归树模型表达式: 其中,数据空间被划分为R1~Rm单元,每个单元有一个固定的输出值Cm.这样可以计算模型输 ...

  4. 决策树CART回归树——算法实现

    决策树模型 选择最好的特征和特征的值进行数据集划分 根据上面获得的结果创建决策树 根据测试数据进行剪枝(默认没有数据的树分支被剪掉) 对输入进行预测 模型树 import numpy as np de ...

  5. 分类回归树(CART)

    概要 本部分介绍 CART,是一种非常重要的机器学习算法.   基本原理   CART 全称为 Classification And Regression Trees,即分类回归树.顾名思义,该算法既 ...

  6. 回归树(Regression Tree)

    目录 回归树 理论解释 算法流程 ID3 和 C4.5 能不能用来回归? 回归树示例 References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中 ...

  7. 决策树算法原理(CART分类树)

    决策树算法原理(ID3,C4.5) CART回归树 决策树的剪枝 在决策树算法原理(ID3,C4.5)中,提到C4.5的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不 ...

  8. 《机器学习Python实现_10_10_集成学习_xgboost_原理介绍及回归树的简单实现》

    一.简介 xgboost在集成学习中占有重要的一席之位,通常在各大竞赛中作为杀器使用,同时它在工业落地上也很方便,目前针对大数据领域也有各种分布式实现版本,比如xgboost4j-spark,xgbo ...

  9. 机器学习技法-决策树和CART分类回归树构建算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增 ...

  10. cart中回归树的原理和实现

    前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评 ...

随机推荐

  1. Vmware-workstation - Centos8.0扩容磁盘空间 / 目录

    1. 软件版本 vmware workstation  15 pro 虚拟机: centos8.0 2.将虚拟机关机选择扩容到多大 3. 进入操作系统,执行lsblk查看sda盘的情况.下图所示,需要 ...

  2. 使用NSIS打包软件

    平台和所需软件 平台: Windows 使用软件: NSIS https://nsis.sourceforge.io/Download HM NIS Edit https://sourceforge. ...

  3. Windows10使用WSL(Windows Subsystem for Linux)

    官方页面地址:https://docs.microsoft.com/zh-cn/windows/wsl/ 查看WSL的IP地址:ip addr | grep eth0 下面是一个示例 PowerShe ...

  4. 【git】git基本使用以及设置

    视频讲解 一.git下载 官网:Git - Downloads (git-scm.com) 国内镜像:CNPM Binaries Mirror (npmmirror.com) 就目前而言,github ...

  5. Smartbi 日志监控工具

    用户日志-开始监控

  6. 【PS】PS如何扩展画布?

    [PS]PS如何扩展画布? 选择裁剪,拉伸图片 选择上方工具栏的勾 即可扩展图片

  7. django日志集成输出器

    在配置文件中 import os # ⽇志 LOGGING = { 'version': 1, # 自定义一个简单版本 'disable_existing_loggers': False, # 是否禁 ...

  8. 一、mysql基础

    说明:学习视频参考尚硅谷--康师傅 第一章.数据库概述 1.为什么使用数据库?why? 持久化(persistence):把数据保存到可掉电式存储设备中以供之后使用.大多数情况下,特别是企业级应用,数 ...

  9. python的GIL全局解释器锁

    global interpreter lock -- 全局解释器锁 CPython 解释器所采用的一种机制,它确保同一时刻只有一个线程在执行 Python bytecode.此机制通过设置对象模型(包 ...

  10. ssh 登陆 Host key verification failed.

    报错 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ WARNING: REMOTE HOST IDENTIFICATION ...