题目描述

二叉树可以采用数组的方法进行存储,把数组中的数据依次自上而下,自左至右存储到二叉树结点中,一般二叉树与完全二叉树对比,比完全二叉树缺少的结点就在数组中用0来表示。,如下图所示

从上图可以看出,右边的是一颗普通的二叉树,当它与左边的完全二叉树对比,发现它比完全二叉树少了第5号结点,所以在数组中用0表示,同样它还少了完全二叉树中的第10、11号结点,所以在数组中也用0表示。

结点存储的数据均为非负整数

输入

第一行输入一个整数t,表示有t个二叉树

第二行起,每行输入一个数组,先输入数组长度,再输入数组内数据,每个数据之间用空格隔开,输入的数据都是非负整数

连续输入t行

输出

每行输出一个示例的先序遍历结果,每个结点之间用空格隔开

样例输入

3

3 1 2 3

5 1 2 3 0 4

13 1 2 3 4 0 5 6 7 8 0 0 9 10

样例输出

1 2 3

1 2 4 3

1 2 4 7 8 3 5 9 10 6

提示

注意从数组位置和二叉树深度、结点位置进行关联,或者父子结点在数组中的位置存在某种管理,例如i, i+1, i/2, i+1/2........或者2i, 2i+1.......仔细观察哦

思路

这道题我做了很久,用了笨办法,就是先输出左边再输出右边,单纯记录一下代码。

#include<iostream>
#include<math.h>
using namespace std; int getLayer(int n) {
int j = 0;
while (n / 2 != 0) {
j++;
n = n / 2;
}
return j;
} int main() {
int t;
cin >> t;
while (t--) {
int len;
cin >> len;
int* num = new int[len];
for (int i = 0; i < len; i++) {
cin >> num[i];
}
int layer = getLayer(len);
int x, n, j = 0;
cout << num[0] << ' ';
for (int i = 1; i <= layer; i++) {
n = pow(2, i);
if (num[n - 1]) {
cout << num[n - 1] << ' ';
num[n - 1] = 0;
}
}
if (num[n] && n != 2)
cout << num[n] << ' ';
if (layer > 2) {
for (int i = 2; i <= layer; i++) {
n = pow(2, i);
x = pow(2, i - 1);
int j = n + pow(2, i - 2);
while (j <= n + x - 1) {
if (num[j - 1]) {
cout << num[j - 1] << ' ';
num[j - 1] = 0;
}
j++;
}
}
}
for (int i = 1; i <= layer; i++) {
n = pow(2, i);
x = pow(2, i - 1);
if (num[n + x - 1] > 0 && (n + x - 1) < len) {
cout << num[n + x - 1] << ' ';
num[n + x - 1] = 0;
}
}
if (num[n + x] > 0 && (n + x) < len)
cout << num[n + x] << ' ';
if (layer > 2) {
for (int i = 2; i <= layer; i++) {
n = pow(2, i);
int j = 2 * n - pow(2, i - 2);
while (j <= 2 * n - 1 && (2 * n - 1) < len) {
if (num[j - 1] > 0) {
cout << num[j - 1] << ' ';
num[j - 1] = 0;
}
j++;
}
}
}
cout << endl;
}
return 0;
}

DS二叉树——二叉树之数组存储的更多相关文章

  1. DS二叉树--二叉树之数组存储

    二叉树可以采用数组的方法进行存储,把数组中的数据依次自上而下,自左至右存储到二叉树结点中,一般二叉树与完全二叉树对比,比完全二叉树缺少的结点就在数组中用0来表示.,如下图所示 从上图可以看出,右边的是 ...

  2. javascript实现数据结构: 树和二叉树,二叉树的遍历和基本操作

    树型结构是一类非常重要的非线性结构.直观地,树型结构是以分支关系定义的层次结构. 树在计算机领域中也有着广泛的应用,例如在编译程序中,用树来表示源程序的语法结构:在数据库系统中,可用树来组织信息:在分 ...

  3. 从零自学Java-7.使用数组存储信息

    1.创建数组: 2.设置数组的大小: 3.为数组元素赋值: 4.修改数组中的信息: 5.创建多维数组: 6.数组排序. 程序SpaceRemover:显示输入字符串,并将其中所有的空格字符替换为句点字 ...

  4. Java修炼——对象数组存储表格数据

    数组存基本数据类型,也可以存引用数据类型 对象数组:使用数组存储对象(自定义对象) 先定义Person的三个私有变量,给他取值赋值方法,重写toString方法. package com.bjsxt. ...

  5. sql server数据库如何存储数组,int[]float[]double[]数组存储到数据库方法

    原文地址:https://www.zhaimaojun.top/Note/5475296 将数组存储到数据库的方法 (本人平时同csharp编写代码,所以本文中代码都是csharp代码,有些地方jav ...

  6. DS二叉树--二叉树之父子结点

    题目描述 给定一颗二叉树的逻辑结构如下图,(先序遍历的结果,空树用字符‘0’表示,例如AB0C00D00),建立该二叉树的二叉链式存储结构. 编写程序输出该树的所有叶子结点和它们的父亲结点 输入 第一 ...

  7. DS二叉树--二叉树构建与遍历

    题目描述 给定一颗二叉树的逻辑结构如下图,(先序遍历的结果,空树用字符‘0’表示,例如AB0C00D00),建立该二叉树的二叉链式存储结构,并输出该二叉树的先序遍历.中序遍历和后序遍历结果 输入 第一 ...

  8. Tido 习题-二叉树-树状数组求逆序对

    这里给大家提供一个全新的求逆序对的方法 是通过树状数组来实现的 题目描述   样例输入 Copy 5 2 3 1 5 4 样例输出 Copy 3 提示     #include<iostream ...

  9. Tido 习题-二叉树-树状数组实现

    题目描述 这就是一个简单的树状数组入门题 可以动态地进行区间和查询 随时可能会进行更新   #include<iostream> #include<cstdio> #inclu ...

随机推荐

  1. 详解SQL操作的窗口函数

    摘要:窗口函数是聚集函数的延伸,是更高级的SQL语言操作,主要用于AP场景下对数据进行一些分析.汇总.排序的功能. 本文分享自华为云社区<GaussDB(DWS) SQL进阶之SQL操作之窗口函 ...

  2. 一个全新的Vue拖拽特性实现:“调整尺寸”部分

    关于拖拽 CabloyJS提供了完备的拖拽特性,可以实现移动和调整尺寸两大类功能,这里对调整尺寸的开发进行阐述 关于移动的开发,请参见:拖拽:移动 演示 开发步骤 下面以模块test-party为例, ...

  3. ExtJS 布局-VBox布局(VBox layout)

    更新记录: 2022年6月11日 优化文章结构. 2022年6月9日 发布. 2022年6月1日 开始. 1.说明 vbox布局类似auto布局,将子组件一个接一个垂直向下放置,既可以在水平方向也可以 ...

  4. 聊聊 C# 方法重载的底层玩法

    最近在看 C++ 的方法重载,我就在想 C# 中的重载底层是怎么玩的,很多朋友应该知道 C 是不支持重载的,比如下面的代码就会报错. #include <stdio.h> int say( ...

  5. 龙芯发布 .NET 6 SDK 6.0.105-ea1 LoongArch64 版本

    龙芯平台.NET,是龙芯公司基于开源社区.NET独立研发适配的龙芯版本,我们会长期进行安全更新和错误修复,并持续进行性能优化.社区.NET7版本开始已经原生支持LoongArch64架构源码.具备如下 ...

  6. java编程用大小写字母及数字输出五位数验证码

    package day08; import java.util.Random;//导入util下的Random包 public class Yanzhengma { public static voi ...

  7. JS:!非

    取非运算符: 开关思想:0为false,1为true: 把一个变量中保存一个布尔值 然后在业务执行时,修改这个变量的值: 为取反 然后通过变量的值执行分支业务 例子: var a = "12 ...

  8. 写了个基于 MacOS + iTerm2 自动打开窗口执行命令的工具

    大家好,我是秋风,今天要给大家带来的这个工具是我最近写的 一个 npm 工具.mmt 是基于 MacOS + iTerm2 ,目的主要是为了提高日常生活中的效率,接下来我带大家看看一些常用的一些场景. ...

  9. Hexo + VSCode 插入 Markdown 图片解决办法

    最近打开 typora 时发现弹窗强更,不让用 beta 版了 想到自己并不是非常需要 WYSIWYG,而且也不是经常使用 typora,于是直接退回到 VSCode 了,而且在 VSCode 里可以 ...

  10. Java Web servlet 详解

    执行原理 当服务器接收到客户端浏览器的访问时,会解析请求的URL路径,获取访问的Servlet的资源路径 查找web.xml文件,看是否有对应的<url-pattern>标签体内容 如果有 ...