文章介绍

本文主要描述在 T507 Android 10 Linux 4.9 平台下,调试 SGM58031 芯片的记录,实现单芯片实时采集外部四通道的电压数值。

芯片介绍

SGM58031 是一款低功耗、16 位、精密三角积分模数转换器 (ADC)。

  • 可使用 3V 至 5.5V 电源工作。
  • 包含一个片内基准电压源和振荡器。
  • 它具有 I2C 兼容接口,可以选择四个I2C从地址。
  • 滤波器的数据速率最高可以达到 960 SPS。
  • 具有片内PGA,可从电源提供低至 ±256mV 的输入范围。
  • 输入多路复用器支持 4 个单端输入或 2 个差分输入配置。
  • SGM58031 采用绿色 MSOP-10 和 TDFN-3×3-10L 封装。 该器件的工作环境温度范围为 -40°C 至 +125°C。

硬件电路

  • 以下电路是从 《SGM58031 SCH VER1.pdf》摘选出来,经过略微调整的支持 4 路单端输入的应用电路。
  • RDY:数字比较器输出/转换准备就绪引脚,数据转换需要时间,可以通过次引脚知道什么时候转换完成。
  • SCL\SDA:I2C 通信时钟线和数据线,用于配置芯片和读取转换好的数据。
  • 虽然只有一个 ADDR 地址选择引脚,但是可以通过以下组合实现一条总线最多可以 挂 4 颗 SGM58031。

    ADDR 引脚接至 器件地址(7bit)
    GND 1001000(0x48)
    VDD 1001001(0x49)
    SDA 1001010(0x4A)
    SCL 1001011(0x4B)

必要知识

通道配置

通过以下芯片功能框图即可了解如下几点:

  • 同一时刻只能选择一路采集,通过 Config 寄存器的 MUC[2:0] 设定。
  • PGA 可以设置 AINx 引脚可测量的电压范围,±0.256V 至 ±6.144V,由 CONFIG 寄存器的 PGA 设定。
  • 参考源可以选择内部或外部提供,通过 Config1 寄存器的 EXT_REF 设定,外部参考源可通过 GN_Trim1 寄存器进行校准。

//输入多路复用器配置
enum SMG58031_CONFIG_MUX{
SMG58031_CONFIG_MUX_AIN0_AIN1, // MUX选通的连接到PGA的引脚为 AIN0 和 AIN1(默认)
SMG58031_CONFIG_MUX_AIN0_AIN3, // MUX选通的连接到PGA的引脚为 AIN0 和 AIN3
SMG58031_CONFIG_MUX_AIN1_AIN3, // MUX选通的连接到PGA的引脚为 AIN1 和 AIN3
SMG58031_CONFIG_MUX_AIN2_AIN3, // MUX选通的连接到PGA的引脚为 AIN2 和 AIN3
SMG58031_CONFIG_MUX_AIN0_GND, // MUX选通的连接到PGA的引脚为 AIN0 和 GND
SMG58031_CONFIG_MUX_AIN1_GND, // MUX选通的连接到PGA的引脚为 AIN1 和 GND
SMG58031_CONFIG_MUX_AIN2_GND, // MUX选通的连接到PGA的引脚为 AIN2 和 GND
SMG58031_CONFIG_MUX_AIN3_GND // MUX选通的连接到PGA的引脚为 AIN3 和 GND
};

工作模式

  • 连续模式

    每完成一次转换后,会自动开始新的转换过程,可以通过 ALERT/RDY 来得到转换完成后的通知。连续模式仅适合单通道采集数据,才能达到 960SPS。
  • 单次模式

    单次模式是通过设置 Config 寄存器的 OS 来触发转换,在转换的过程中 OS 保持为 ‘0’,芯片不再响应 OS 位操作。

    如果转换数据就绪了,OS 会被设置为 ‘1’,并且进入掉电模式,这时候可以再次写入 ‘1’ 到 OS 再次触发数据转换。

    单次模式所采集的数据完全稳定,不需要丢弃数据。



// 触发模式
enum SMG58031_CONFIG_MODE{
// 连续模式: ALERT/RDY 引脚在每次转换完成时发出一个脉冲(~8μs)
SMG58031_CONFIG_MODE_CONVERSION,
// 单次模式: ALERT/RDY 引脚在每次转换完成时被设置低电平(COMP_POL = 0)(默认)
SMG58031_CONFIG_MODE_SINGLE_SHOT
};

转换通知

我们可以通过 ALERT/RDY 引脚作为数据转换就绪通知:

  • 将高阈值寄存器的 MSB(最高有效位) 设置为 '1',其次将低阈值寄存器的 MSB(最高有效位) 设置为 '0 '。
  • 设置比较器队列工作模式的寄存器为 ‘00’ ,即设置 Config 寄存器中的 COMP_QUE[1:0] = 0b00。
  • 如果设置 COMP_QUE[1:0] =0b11,那么可以禁止该引脚工作,不会影响比较模式 COMP_MODE 和 锁存控制 COMP_LAT。
  • ALERT/RDY 引脚是开漏输出,因此需要外接上拉电阻。
  • 连续触发模式时,ALERT/RDY 引脚在每次转换完成结束时给出一个脉冲(8μs)。
  • 单次触发模式时,ALERT/RDY 引脚在转换数据准备就绪时变为低电平(COMP_POL= 0b0),并保持低电平直到下一次转换开始。
//比较器队列和失能
//这些位可以设置在 ALERT/RDY 引脚上发出警报输出之前超过阈值的连续 ADC 转换所需的次数。
enum SMG58031_CONFIG_COMP_QUE{
SMG58031_CONFIG_COMP_QUE_ONE_CONVERSION, // 连续超过阈值一次转换即触发 ALERT/RDY 引脚
SMG58031_CONFIG_COMP_QUE_TOW_CONVERSION, // 连续超过阈值两次转换才触发 ALERT/RDY 引脚
SMG58031_CONFIG_COMP_QUE_FOUR_CONVERSION, // 连续超过阈值四次转换才触发 ALERT/RDY 引脚
SMG58031_CONFIG_COMP_QUE_DISABLE_COMPARATOR,// 禁用比较器并将 ALERT/RDY 引脚设置为高阻态(默认)
}; //比较器锁存
//该位设置 ALERT/RDY 引脚是在其输出设置后锁存还是在 ADC 转换结果在上限和下限阈值范围内时重置
enum SMG58031_CONFIG_COMP_LAT{
SMG58031_CONFIG_COMP_LAT_NONLATCHING, // 不锁存比较器(默认)
SMG58031_CONFIG_COMP_LAT_LATCHING, // 锁存比较器, 读取转换数据时解锁
}; //比较器极性
//该位控制 ALERT/RDY 引脚的极性
enum SMG58031_CONFIG_COMP_POL{
SMG58031_CONFIG_ACTIVE_LOW , // 转换数据准备好时低电平有效(默认)
SMG58031_CONFIG_ACTIVE_HIGH // 转换数据准备好时高电平有效
}; //比较器模式
//该位配置比较器工作模式
enum SMG58031_CONFIG_COMP_MODE{
SMG58031_CONFIG_COMP_TRADITIONAL, // 传统模式(默认)
SMG58031_CONFIG_COMP_WINDOW // 窗口模式
};

电压换算

  • SGM58031 有以下 6 种测量范围可选,参考电压可选择内部的 2.048V,也可以通过选择从外部输入。
  • 如果是使用内部参考电源,那么可选的测量范围:±6.144V、±4.096V、±2.048V、±1.024V、±0.512V、±0.256V。
  • 选择的测量范围越小,测量的精度就越高,如 6144mV / 32768 = ±0.1875mV 而 256mV / 32768 = ±0.0078125mV。
  • 如果需要测量 5V 的电压,VDD 的供电就需要选择 5V,所测量的输入信息不能超过 VDD+0.3V。
  • 电压换算公式为:电压数值 = ADC数值(寄存器0x00) / 32768 X 缩放满量程范围(寄存器0x01的PGA[2:0])。

PGA Setting 测量范围 内部基准(2048mV)
2/3 ± 3xVREF ± 3x2.048 = ±6144mV
1 ± 2xVREF ± 2x2048 = ±4096mV
2 ±VREF ±2048mV
4 ±VREF/2 ± 2048 / 2 = ±1024mV
8 ±VREF/4 ± 2048 / 4 = ±512mV
16 ±VREF/8 ± 2048 / 8 = ±256mV
//可编程增益放大器配置
//以基准电压来进行放大或者缩小来决定满量程范围
//此参数表示ADC缩放的满量程范围, 请勿对器件的模拟输入施加超过 VDD + 0.3V 的电压
enum SMG58031_CONFIG_PGA{
SMG58031_CONFIG_PGA_2_3_6144V, //增益为2/3, 引脚最大输入电压为 ±6.144 + 0.3V
SMG58031_CONFIG_PGA_1_4096V, //增益为1, 引脚最大输入电压为 ±4.096 + 0.3V
SMG58031_CONFIG_PGA_2_2048V, //增益为2, 引脚最大输入电压为 ±2.048 + 0.3V(默认)
SMG58031_CONFIG_PGA_4_1024V, //增益为4, 引脚最大输入电压为 ±1.024 + 0.3V
SMG58031_CONFIG_PGA_8_0512V, //增益为8, 引脚最大输入电压为 ±0.512 + 0.3V
SMG58031_CONFIG_PGA_16_0256V0, //增益为16, 引脚最大输入电压为 ±0.256 + 0.3V
SMG58031_CONFIG_PGA_16_0256V1, //增益为16, 引脚最大输入电压为 ±0.256 + 0.3V
SMG58031_CONFIG_PGA_16_0256V2 //增益为16, 引脚最大输入电压为 ±0.256 + 0.3V
}; // 转换代码实现, 实现原理参考 Table 4
float adc_convert_mv(short value)
{
float adc_max = 0.0;
adc_max = value < 0 ? 0x8000 : 0x7FFF;
return value / adc_max * 6144;
}

数据读写

  • 寄存器地址 8 位,寄存器数据 16 位,时钟频率支持 10Hz ~ 3.4MHz。
  • 写入寄存器时,先写入 8 位寄存器地址,再按高字节在先,低字节在后,连续写入两个字节数据。
  • 读取寄存器时,先写入 8 位寄存器地址,再按高字节在先,低字节在后,连续读入两个字节数据。

static inline int sgm58031_read_value16(struct i2c_client *client, unsigned char reg, unsigned short *value)
{
struct i2c_msg msgs[2] = {0};
int num = sizeof(msgs) / sizeof(msgs[0]); msgs[0].flags = !I2C_M_RD;
msgs[0].addr = client->addr;
msgs[0].len = sizeof(unsigned char);
msgs[0].buf = &reg; msgs[1].flags = I2C_M_RD;
msgs[1].addr = client->addr;
msgs[1].len = sizeof(unsigned short);
msgs[1].buf = (unsigned char *)value; if(i2c_transfer(client->adapter, msgs, num) == num){
*value = htons(*value);
return 0;
} return -1;
}

static inline int sgm58031_write_value16(struct i2c_client *client, unsigned char reg, unsigned short value)
{
struct i2c_msg msg = {0};
unsigned char buf[3] = {0}; buf[0] = reg;
buf[1] = (value >> 8) & 0xFF;
buf[2] = (value >> 0) & 0xFF; msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = sizeof(buf);
msg.buf = buf; return i2c_transfer(client->adapter, &msg, 1) != 1 ? -1 : 0;
}

代码实现

实现逻辑

  • SOC 通过 GPIO 连接 ALERT/RDY 引脚,并注册 GPIO 下降沿中断。
  • 设置 ADC 缩放满量程范围为 6.144V,设置 ALERT/RDY 低电平有效,启动单次触发转换。
  • ADC 完成转换后 ALERT/RDY 引脚会设置为低电平,会触发 SOC 的 GPIO 下降沿中断服务。
  • 在中断线程读取转换结果,并切换下一个通道,再次重新启动单次触发转换。
......
static irqreturn_t sgm58031_ready_hanbler(int irq, void *data)
{
struct sgm58031_platdata *sgmdata = (struct sgm58031_platdata *)data;
struct i2c_client *client = sgmdata->client;
unsigned char ch = 0x00; // 逐个按顺序切换通道进行模拟信号转换
switch(sgmdata->channel.conf.reg.mux){
case SMG58031_CONFIG_MUX_AIN0_GND:
ch = 0;
sgmdata->channel.conf.reg.mux = SMG58031_CONFIG_MUX_AIN1_GND;
break;
case SMG58031_CONFIG_MUX_AIN1_GND:
ch = 1;
sgmdata->channel.conf.reg.mux = SMG58031_CONFIG_MUX_AIN2_GND;
break;
case SMG58031_CONFIG_MUX_AIN2_GND:
ch = 2;
sgmdata->channel.conf.reg.mux = SMG58031_CONFIG_MUX_AIN3_GND;
break;
case SMG58031_CONFIG_MUX_AIN3_GND:
ch = 3;
sgmdata->channel.conf.reg.mux = SMG58031_CONFIG_MUX_AIN0_GND;
break;
default:
ch = 0;
sgmdata->channel.conf.reg.mux = SMG58031_CONFIG_MUX_AIN0_GND;
} // 读取转换数据, 并再次启动单次转换
if(sgmdata->channel.enable){
sgm58031_read_value16(client, SGM58031_REG_CONVERSION, &sgmdata->channel.value[ch]);
sgm58031_write_value16(client, SGM58031_REG_CONFIG, sgmdata->channel.conf.regval);
return IRQ_HANDLED;
}
memset(sgmdata->channel.value, 0x00, sizeof(sgmdata->channel.value));
return IRQ_HANDLED;
} static int sgm58031_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
......
// 申请中断线程, 并设置下降沿触发
devm_request_threaded_irq(dev, sgmdata->gpio_irq, NULL, sgm58031_ready_hanbler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, np->name, ...);
sgmdata->channel.enable = autostart ? true : false;
sgmdata->channel.conf.regval = SGM58031_REG_CONFIG_DEFAULT; // 恢复为芯片初始值
sgmdata->channel.conf.reg.comp_que = SMG58031_CONFIG_COMP_QUE_ONE_CONVERSION; // 连续超过阈值一次转换即触发 ALERT/RDY 引脚
sgmdata->channel.conf.reg.comp_lat = SMG58031_CONFIG_COMP_LAT_LATCHING; // 锁存比较器, 读取转换数据时解锁
sgmdata->channel.conf.reg.comp_pol = SMG58031_CONFIG_ACTIVE_LOW; // 转换数据准备好时低电平有效
sgmdata->channel.conf.reg.comp_mode = SMG58031_CONFIG_COMP_TRADITIONAL; // 指定比较器工作模式为传统比较模式
sgmdata->channel.conf.reg.dr = SMG58031_CONFIG_DR_HZ_100_OR_120; // 数据速率设置为 100Hz
sgmdata->channel.conf.reg.mode = SMG58031_CONFIG_MODE_SINGLE_SHOT; // 单次转换模式
sgmdata->channel.conf.reg.pga = SMG58031_CONFIG_PGA_2_3_6144V; // 满量程范围为 6.144V
sgmdata->channel.conf.reg.mux = SMG58031_CONFIG_MUX_AIN0_GND; // MUX选通的连接到PGA的引脚为 AIN0 和 GND
sgmdata->channel.conf.reg.os = SMG58031_CONFIG_OS_BEGIN_SINGLE; // 启动单次转换模式
sgm58031_write_value16(client, SGM58031_REG_LO_THRESH, 0x0000); // 将低阈值寄存器的 MSB(最高有效位) 设置为 '0'
sgm58031_write_value16(client, SGM58031_REG_HI_THRESH, 0x8000); // 将高阈值寄存器的 MSB(最高有效位) 设置为 '1'
sgm58031_write_value16(client, SGM58031_REG_CONFIG1, SGM58031_REG_CONFIG1_DEFAULT);
if(sgmdata->channel.enable){
dev_notice(dev, "convert -> [autostart]\n");
sgm58031_write_value16(client, SGM58031_REG_CONFIG, sgmdata->channel.conf.regval);
}
......
return 0;
} static const struct i2c_device_id sgm58031_ids[] = {
{"sgm58031", 0x00},{}
};
MODULE_DEVICE_TABLE(i2c, sgm58031_ids); static struct i2c_driver sgm58031_i2c_driver = {
.driver.name = "sgm58031",
.probe = sgm58031_i2c_probe,
.remove = sgm58031_i2c_remove,
.id_table = sgm58031_ids,
}; module_i2c_driver(sgm58031_i2c_driver);
MODULE_LICENSE("GPL");

数据结构

这些数据结构对应的是 SGM58031 寄存器结构,其中注释解释了大部分寄存器的作用。

#ifndef __SGM58031_REG_H__
#define __SGM58031_REG_H__ // SGM58031 内部寄存器地址
#define SGM58031_REG_CONVERSION 0x00 //AD值转换寄存器,16bit位二进制补码格式,默认值0x0000,只读
#define SGM58031_REG_CONFIG 0x01 //配置寄存器,默认0x8583,可读可写
#define SGM58031_REG_LO_THRESH 0x02 //比较器阈值下限,默认0x8000
#define SGM58031_REG_HI_THRESH 0x03 //比较器阈值上限,默认0x7FFF
#define SGM58031_REG_CONFIG1 0x04 //扩展配置寄存器,默认0x0000
#define SGM58031_REG_CHIPID 0x05 //芯片ID,默认0x0080
#define SGM58031_REG_GN_TRIM1 0x06 //增益修正,默认0x03FA
#define SGM58031_CHIPID 0x80 // SGM58031 内部寄存器默认值
#define SGM58031_REG_CONFIG_DEFAULT 0x8583
#define SGM58031_REG_CONFIG1_DEFAULT 0x0000
#define SGM58031_REG_HI_THRESH_DEFAULT 0x7FFF
#define SGM58031_REG_LO_THRESH_DEFAULT 0x8000 //比较器队列和失能
//这些位可以设置在 ALERT/RDY 引脚上发出警报输出之前超过阈值的连续 ADC 转换所需的次数。
enum SMG58031_CONFIG_COMP_QUE{
SMG58031_CONFIG_COMP_QUE_ONE_CONVERSION, // 连续超过阈值一次转换即触发 ALERT/RDY 引脚
SMG58031_CONFIG_COMP_QUE_TOW_CONVERSION, // 连续超过阈值两次转换才触发 ALERT/RDY 引脚
SMG58031_CONFIG_COMP_QUE_FOUR_CONVERSION, // 连续超过阈值四次转换才触发 ALERT/RDY 引脚
SMG58031_CONFIG_COMP_QUE_DISABLE_COMPARATOR,// 禁用比较器并将 ALERT/RDY 引脚设置为高阻态(默认)
}; //比较器锁存
//该位设置 ALERT/RDY 引脚是在其输出设置后锁存还是在 ADC 转换结果在上限和下限阈值范围内时重置
enum SMG58031_CONFIG_COMP_LAT{
SMG58031_CONFIG_COMP_LAT_NONLATCHING, // 不锁存比较器(默认)
SMG58031_CONFIG_COMP_LAT_LATCHING, // 锁存比较器, 读取转换数据时解锁
}; //比较器极性
//该位控制 ALERT/RDY 引脚的极性
enum SMG58031_CONFIG_COMP_POL{
SMG58031_CONFIG_ACTIVE_LOW , // 转换数据准备好时低电平有效(默认)
SMG58031_CONFIG_ACTIVE_HIGH // 转换数据准备好时高电平有效
}; //比较器模式
//该位配置比较器工作模式
enum SMG58031_CONFIG_COMP_MODE{
SMG58031_CONFIG_COMP_TRADITIONAL, // 传统模式(默认)
SMG58031_CONFIG_COMP_WINDOW // 窗口模式
}; // 数据速率
enum SMG58031_CONFIG_DR{
SMG58031_CONFIG_DR_HZ_6P25_OR_7P5, // 6.25Hz(DR_SEL=0)/7.5Hz(DR_SEL=1)
SMG58031_CONFIG_DR_HZ_12P5_OR_15, // 12.5Hz(DR_SEL=0)/15Hz(DR_SEL=1)
SMG58031_CONFIG_DR_HZ_25_OR_30, // 25Hz(DR_SEL=0)/30Hz(DR_SEL=1)
SMG58031_CONFIG_DR_HZ_50_OR_60, // 50Hz(DR_SEL=0)/60Hz(DR_SEL=1)
SMG58031_CONFIG_DR_HZ_100_OR_120, // 100Hz(DR_SEL=0)/120Hz(DR_SEL=1)(默认)
SMG58031_CONFIG_DR_HZ_200_OR_240, // 200Hz(DR_SEL=0)/240Hz(DR_SEL=1)
SMG58031_CONFIG_DR_HZ_400_OR_480, // 400Hz(DR_SEL=0)/480Hz(DR_SEL=1)
SMG58031_CONFIG_DR_HZ_800_OR_960 // 800Hz(DR_SEL=0)/960HZ(DR_SEL=1)
}; // 触发模式
enum SMG58031_CONFIG_MODE{
SMG58031_CONFIG_MODE_CONVERSION, // 连续模式: ALERT/RDY 引脚在每次转换完成时发出一个脉冲(~8μs)
SMG58031_CONFIG_MODE_SINGLE_SHOT // 单次模式: ALERT/RDY 引脚在每次转换完成时被设置低电平(COMP_POL = 0)(默认)
}; //可编程增益放大器配置
//以基准电压来进行放大或者缩小来决定满量程范围
//此参数表示ADC缩放的满量程范围, 请勿对器件的模拟输入施加超过 VDD + 0.3V 的电压
//电压转换代码:
//float adc_convert_mv(short value)
//{
// float adc_max = 0.0;
// adc_max = value < 0 ? 0x8000 : 0x7FFF;
// return value / adc_max * 6144;
//}
enum SMG58031_CONFIG_PGA{
SMG58031_CONFIG_PGA_2_3_6144V, //增益为2/3, 引脚最大输入电压为 ±6.144 + 0.3V
SMG58031_CONFIG_PGA_1_4096V, //增益为1, 引脚最大输入电压为 ±4.096 + 0.3V
SMG58031_CONFIG_PGA_2_2048V, //增益为2, 引脚最大输入电压为 ±2.048 + 0.3V(默认)
SMG58031_CONFIG_PGA_4_1024V, //增益为4, 引脚最大输入电压为 ±1.024 + 0.3V
SMG58031_CONFIG_PGA_8_0512V, //增益为8, 引脚最大输入电压为 ±0.512 + 0.3V
SMG58031_CONFIG_PGA_16_0256V0, //增益为16, 引脚最大输入电压为 ±0.256 + 0.3V
SMG58031_CONFIG_PGA_16_0256V1, //增益为16, 引脚最大输入电压为 ±0.256 + 0.3V
SMG58031_CONFIG_PGA_16_0256V2 //增益为16, 引脚最大输入电压为 ±0.256 + 0.3V
}; //输入多路复用器配置
enum SMG58031_CONFIG_MUX{
SMG58031_CONFIG_MUX_AIN0_AIN1, // MUX选通的连接到PGA的引脚为 AIN0 和 AIN1(默认)
SMG58031_CONFIG_MUX_AIN0_AIN3, // MUX选通的连接到PGA的引脚为 AIN0 和 AIN3
SMG58031_CONFIG_MUX_AIN1_AIN3, // MUX选通的连接到PGA的引脚为 AIN1 和 AIN3
SMG58031_CONFIG_MUX_AIN2_AIN3, // MUX选通的连接到PGA的引脚为 AIN2 和 AIN3
SMG58031_CONFIG_MUX_AIN0_GND, // MUX选通的连接到PGA的引脚为 AIN0 和 GND
SMG58031_CONFIG_MUX_AIN1_GND, // MUX选通的连接到PGA的引脚为 AIN1 和 GND
SMG58031_CONFIG_MUX_AIN2_GND, // MUX选通的连接到PGA的引脚为 AIN2 和 GND
SMG58031_CONFIG_MUX_AIN3_GND // MUX选通的连接到PGA的引脚为 AIN3 和 GND
}; //运行状态或单次转换位
//运行状态或单次转换启动此位确定设备的运行状态。 OS只能在掉电状态下写入,并且在转换正在进行时无效。
enum SMG58031_CONFIG_OS{
SMG58031_CONFIG_OS_INVALID = 0, // 写入时无效
SMG58031_CONFIG_OS_BEGIN_SINGLE = 1, // 写入时启动单词转换
SMG58031_CONFIG_OS_CONVERT_ING = 0, // 读取时表示芯片正在进行转换
SMG58031_CONFIG_OS_CONVERT_NOT = 1, // 读取时表示芯片没有进行转换
}; // 配置寄存器
typedef union {
unsigned short regval;
struct{
uint8_t comp_que:2; // 比较器队列和失能
uint8_t comp_lat:1; // 比较器锁存配置
uint8_t comp_pol:1; // 比较器极性配置
uint8_t comp_mode:1; // 比较器工作模式
uint8_t dr:3; // 转换速率配置
uint8_t mode:1; // 数据转换模式配置
uint8_t pga:3; // 满量程范围配置
uint8_t mux:3; // 通道选择配置
uint8_t os:1; // 转换控制和工作状态
}reg;
}smg58031_register_config_t; // 是否采用外部电压作为参考电压
enum SGM58031_CONFIG1_EXT_REF{
SGM58031_CONFIG1_EXT_REF_NONE, // 不采用外部电压作为参考电压(默认)
SGM58031_CONFIG1_EXT_REF_AIN3, // 采用 AIN3 电压作为参考电压
}; // 似乎与 I2C 总线电压范围有关
// I2C 电平低于 3V 置 0
// I2C 电平高于 3V 置 1
enum SGM58031_CONFIG1_BUS_FLEX{
// 0 = 在I2C总线电压低于器件VDD的情况下禁用漏电阻断电路(默认)
// I2C 接口仍然正常工作,但当 VBUS < VDD 时 VDD 出现泄漏 - 0.3V
SGM58031_CONFIG1_BUS_LOW_VOLTAGE_DISABLE,
//1 = 总线电压可以低于VDD,而不会引起泄漏。
//VDD 范围为 3V 至 5.5V,I2C 总线电压应限制为 3V 至 5.5V
SGM58031_CONFIG1_BUS_LOW_VOLTAGE_ENABLE
}; // 设置为 1 时, 用于做输入传感器异常检测, 如果输入端的传感器开路, 那读数为最大值
enum SGM58031_CONFIG1_BURNOUT{
SGM58031_CONFIG1_BURNOUT_NOT, // 无电流源(默认)
SGM58031_CONFIG1_BURNOUT_2uA, // 在 AINs 2uA 的电流源
}; // 转换速率模式选择
enum SGM58031_CONFIG1_DR_SEL{
SGM58031_CONFIG1_DR_SEL_1, // 0 = DR[2:0] = 000 ~ 111 for conversion rate of 6.25Hz, 12.5Hz, 25Hz, 50Hz, 100Hz, 200Hz, 400Hz and 800Hz (default)
SGM58031_CONFIG1_DR_SEL_2, // 1 = DR[2:0] = 000 ~ 111 for conversion rate of 7.5Hz, 15Hz, 30Hz, 60Hz, 120Hz, 240Hz, 480Hz and 960Hz
}; // 掉电控制
enum SGM58031_CONFIG1_PD{
SGM58031_CONFIG1_PD_POWER_DOWN = 1, // 掉电控制
}; // 配置寄存器1
typedef union{
unsigned short regval;
struct {
unsigned char na0:3;
unsigned char ext_ref:1;
unsigned char bus_flex:1;
unsigned char reserved:1;
unsigned char burnout:1;
unsigned char dr_sel:1;
unsigned char pd:1;
unsigned char na1:7;
}reg;
}smg58031_register_config1_t; // 芯片 ID
typedef union{
unsigned short regval;
struct {
unsigned char na0:5;
unsigned char ver:3;
unsigned char id:5;
unsigned char na1:3;
}reg;
}smg58031_register_chipid_t; #endif

【随笔记】T507 ADC SGM58031 16BIT 4Channel 调试记录的更多相关文章

  1. SPI 核软件调试记录

    SPI 核软件调试记录 1.首先说说int SpiFlashWaitForFlashReady(void)这一函数,基本上其它函数在执行的时候,都会事先执行一次此函数.    因为此函数的作用主要是用 ...

  2. Video Timing Controller v6.1软件调试记录

    Video Timing Controller v6.1软件调试记录 GUI配置: . case XVTC_VMODE_PAL: //576i@50 { TimingPtr->Interlace ...

  3. Video Test Pattern Generator(7.0)软件调试记录

    Video Test Pattern Generator(7.0)软件调试记录 . XVidC_VideoMode XVIDC_VM_576_50_I = XVIDC_VM_720x576_50_I ...

  4. JFinal使用笔记3-注册和登录功能开发记录

    首页 开源项目 问答 代码 博客 翻译 资讯 移动开发 招聘 城市圈 当前访客身份:游客 [ 登录 | 加入开源中国 ]   当前访客身份: 游客 [ 登录 | 加入开源中国 ] 软件   土龙 关注 ...

  5. MA82G5D16AS16 主频调试记录

    MA82G5D16AS16 主频调试记录 当 SCKS 设置 为 MCKDO / 128 时 MCU 的电流为 0.58mA,100UF 电容可以维持 0.5S,大概可以满足. 但是需要注意外围的线路 ...

  6. Apusic中间件结合MyEclipse进行远程调试记录

    Apusic中间件结合MyEclipse进行远程调试记录. 在金蝶域中正常部署应用. 启动金蝶中间件时使用"startapusic -ds"命令. 在MyEclipse的Run-- ...

  7. http://stblog.baidu-tech.com/?p=1684) coredump调试记录 - PHP篇 原创: 扶墙 贝壳产品技术 今天

    http://stblog.baidu-tech.com/?p=1684) coredump调试记录 - PHP篇 原创: 扶墙 贝壳产品技术 今天

  8. 基于freescale i.Mx6(ARM)的阿里云oss调试记录

    交叉编译阿里OSS调试记录 1.1 开通oss服务 具体参考以下链接: https://help.aliyun.com/document_detail/31884.html?spm=a2c4g.111 ...

  9. [ZJCTF 2019]EasyHeap | house of spirit 调试记录

    BUUCTF 上的题目,由于部分环境没有复现,解法是非期望的 house of spirit 第一次接触伪造堆的利用方式,exp 用的是 Pwnki 师傅的,本文为调试记录及心得体会. 逆向分析的过程 ...

随机推荐

  1. Abp.Zero 手机号免密登录验证与号码绑定功能的实现(一):验证码模块

    这是一篇系列博文,我将使用Abp.Zero搭建一套集成手机号免密登录验证与号码绑定功能的用户系统: Abp.Zero 手机号免密登录验证与号码绑定功能的实现(一):验证码模块 Abp.Zero 手机号 ...

  2. Git创建、diff代码、回退版本、撤回代码,学废了吗

    .eye-care { background-color: rgba(199, 237, 204, 1); padding: 10px } .head-box { display: flex } .t ...

  3. 数据库可视化工具分享 (DBeaver)

    前提:最近公司下发通知,所有开发人员 必须 卸载 Navicat 数据库可视化工具,不知道兄弟们有没有在使用的,可能现在的反应跟我一样,一脸懵逼,Navicat为什么不能使用呢? 有事没事找度娘,于是 ...

  4. 阿里技术专家详解 DDD 系列- Domain Primitive

    简介: 关于DDD的一系列文章,希望能继续在总结前人的基础上发扬光大DDD的思想,但是通过一套我认为合理的代码结构.框架和约束,来降低DDD的实践门槛,提升代码质量.可测试性.安全性.健壮性. 作者| ...

  5. CSS伪类使用详解

    基本描述 CSS伪类是很常用的功能,主要应用于选择器的关键字,用来改变被选择元素的特殊状态下的样式. 伪类类似于普通CSS类的用法,是对CSS选择器的一种扩展,增强选择器的功能. 目前可用的伪类有大概 ...

  6. AIBOX视频边缘计算终端,助力识别人员违规行为!

    目前,制造业工厂工作区布局分散,生产安全质量控制难度较大.人员擅自离岗.玩手机.区域入侵.吸烟.未穿反光衣.异物占位等违法行为不能及时控制,安全风险十分巨大.如果手动检查或通过人眼检查监控录像,不仅产 ...

  7. Qt对象跨线程出现的问题记录,以及解决方案

    Qt在跨线程开发的时候可能会出现不少问题,在这里记录一下 Qt目前用下来还是非常强大的,虽然只是用在桌面端程序开发上,但是其强大的桌面开发库真的挺好用的(Layout除外,你妈死了). Qt除了UI, ...

  8. python 之 random.sample() 报ValueError: Sample larger than population or is negative

    def device_id(): device = ''.join(random.sample(string.digits, 19)) return device print(device_id()) ...

  9. 02- 快速入门MybatisPlus

    创建表 现有一张 User 表,其表结构如下: id name age email 1 Jone 18 test1@baomidou.com 2 Jack 20 test2@baomidou.com ...

  10. git使用与代码托管

    平时自己写的简单程序文件太多,可以放到代码托管的网站.比如国内的gitee.com, 好吧,只是把这个网站当网络云盘用了.在gitee网站上加上程序运行环境,使用文档,写好README.md使用介绍. ...