单机环境下的秒杀问题

全局唯一ID

为什么要使用全局唯一ID:

当用户抢购时,就会生成订单并保存到订单表中,而订单表如果使用数据库自增ID就存在一些问题:

  • 受单表数据量的限制
  • id的规律性太明显

场景分析一:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。

场景分析二:随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。

场景分析三:如果全部使用数据库自增长ID,那么多张表都会出现相同的ID,不满足业务需求。

在分布式系统下全局唯一ID需要满足的特点:

  1. 唯一性
  2. 递增性
  3. 安全性
  4. 高可用(服务稳定)
  5. 高性能(生成速度够快)

为了提高数据库性能,这里采用Java中的数值类型(Long--8(Byte)字节,64位),

  • ID的组成部分:符号位:1bit,永远为0
  • 时间戳:31bit,以秒为单位,可以使用69年
  • 序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID

类雪花算法开发

我们的生成策略是基于redis的自增长,及序列号部分,在实现的时候需要传入不同的前缀(即不同业务不同序列号)

我们开始实现时间戳位数,先设置一个基准值,即某一时间的秒数,使用的时候用当前时间秒数-基准时间=所得秒数即时间戳;

基准值计算:这里我是用2023/1/1 0:0:0;秒数为:1672531200

public static void main(String[] args) {
LocalDateTime time = LocalDateTime.of(2023, 1, 1, 0, 0, 0);
//设置时区
long l = time.toEpochSecond(ZoneOffset.UTC);
System.out.println(l);
}

开始生成时间戳:获得当前时间的秒数-基准值(BEGIN_TIMESTAMP=1672531200)

LocalDateTime dateTime = LocalDateTime.now();
//秒数设置时区
long nowSecond = dateTime.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;

然后生成序列号,采用Redis的自增操作实现。keyPrefix业务Key(传入的)

long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix);

这一行代码的使用问题是,同一个业务使用的同一个key,但是redis的自增上上限为2^64,总有时候会超过32位,所以最好是让其同一业务也要有不同的key值,这里我们可以加上当前时间。

//获取当日日期,精确到天
String date = dateTime.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
//自增长上限2^64
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);

这样做的好处是:

  1. 在redis中缓存是分层的,方便查看,也方便统计每天、每月的订单量或者其他数据等
  2. 不会超过Redis的自增长的值,安全性提高

最后将时间戳和序列号进行拼接即可,位运算。COUNT_BITS=32

timestamp << COUNT_BITS | count;

首先将时间戳左移32位,低处补零,然后进行或运算(遇1得1),这样实现整个的全局唯一ID。

测试

在同一个业务中使用全局唯一ID生成。

/**
* 测试全局唯一ID生成器
* @throws InterruptedException
*/
@Test
public void testIdWorker() throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(300);
ExecutorService executorService = Executors.newFixedThreadPool(300);
Runnable task = ()->{
for (int i = 0; i < 100; i++) {
long id = redisIdWorker.nextId("order");
System.out.println("id:"+id);
}
//计数-1
countDownLatch.countDown();
};
long begin = System.currentTimeMillis();
for (int i = 0; i < 300; i++) {
executorService.submit(task);
}
//等待子线程结束
countDownLatch.await();
long endTime = System.currentTimeMillis();
System.out.println("time= "+(endTime-begin));
}

time= 2608ms=2.68s,生成数量:30000

取两个相近的十进制转为二进制对比:

id : 148285184708444304

0010 0000 1110 1101 0000 1001 0111 0000 0000 0000 0000 0000 0000 1001 0000

id : 148285184708444305

0010 0000 1110 1101 0000 1001 0111 0000 0000 0000 0000 0000 0000 1001 0001

短码生成策略

仅支持很小的调用量,用于生成活动配置类编号,保证全局唯一

import java.util.Calendar;
import java.util.Random; /**
* @author xbhog
* @describe:短码生成策略,仅支持很小的调用量,用于生成活动配置类编号,保证全局唯一
* @date 2022/9/18
*/
@Slf4j
@Component
public class ShortCode implements IIdGenerator {
@Override
public synchronized long nextId() {
Calendar calendar = Calendar.getInstance();
int year = calendar.get(Calendar.YEAR);
int week = calendar.get(Calendar.WEEK_OF_YEAR);
int day = calendar.get(Calendar.DAY_OF_WEEK);
int hour = calendar.get(Calendar.HOUR_OF_DAY);
log.info("年:{},周:{},日:{},小时:{}",year, week,day,hour);
//打乱顺序:2020年为准 + 小时 + 周期 + 日 + 三位随机数
StringBuilder idStr = new StringBuilder();
idStr.append(year-2020);
idStr.append(hour);
idStr.append(String.format("%02d",week));
idStr.append(day);
idStr.append(String.format("%03d",new Random().nextInt(1000)));
log.info("查看拼接之后的值:{}",idStr);
return Long.parseLong(idStr.toString());
} public static void main(String[] args) {
long l = new ShortCode().nextId();
System.out.println(l);
}
}

日志记录:

14:40:22.336 [main] INFO ShortCode - 年:2023,周:5,日:7,小时:14
14:40:22.341 [main] INFO ShortCode - 查看拼接之后的值:314057012
314057012

秒杀下单功能及并发测试

完整代码GitHubhttps://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike

秒杀条件分析:

  • 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
  • 库存是否充足,不足则无法下单

业务流程图:

开发流程:

优惠卷订单服务处理流程

  1. 查询优惠卷

  2. 判断用户是否在秒杀时间段内

  3. 判断是否库存充足

    1. 不足:返回异常信息
    2. 充足:执行步骤4
  4. 创建优惠卷订单

  5. 落库

  6. 返回订单ID

流程比较简单,这里需要注意的点是在库存扣减这部分

@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
// 2.判断秒杀是否开始
// 3.判断秒杀是否已经结束
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库
//update tb_seckill_voucher set stock=stock -1 where voucher_id = #{voucherId}
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//6.创建订单
// 6.1.全局唯一ID生成:订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2.用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder); return Result.ok(orderId);
}

jmeter进行测试:

条件:线程200,循环一次,查看汇总报告可以看出:

预期结果应该为异常是50%,但是这里显示为0%,查看数据库可以看出生成订单200个,库存为-100;

原因分析:

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,由此就会出现库存的超卖问题

锁解决超卖问题

完整代码GitHubhttps://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike

解决方式

  1. 悲观锁:可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
  2. 乐观锁:会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas

采用乐观锁解决超卖问题:

在操作时,对版本号进行+1 操作,然后要求version 如果是1 的情况下,才能操作,那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题,此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功。

修改上述代码有两种修改方式:

  1. 只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的。
  2. 判断条件为库存数stock>0即可(解决问题)

测试第一种方式:100线程并发;数据库订单数为1,库存99(预期时库存0)。

通过测试发现会有99%失败的情况,跟我们预计的0%失败率来说相差很远,失败的原因在于:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败。

解决方式就是修改库存数条件为stock>0

一人一单秒杀并发问题

完整代码GitHubhttps://github.com/xbhog/hm-dianping/tree/20230130-xbhog-redisSpike

上述秒杀订单有一个问题,一个用户可以秒杀多次;优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单。

相关流程图如下:

在原来的代码上增加用户判断:

// 5.一人一单逻辑
// 5.1.用户id
Long userId = UserHolder.getUser().getId();
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}

存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作

当前注意点:

  1. 线程安全实现
  2. 锁的范围(颗粒度)
  3. 事务问题

处理线程安全问题,将对数据库更新和插入的操作单独作为一个方法进行封装:

@Transactional
public synchronized Result createVoucherOrder(Long voucherId) { Long userId = UserHolder.getUser().getId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
} // 6.扣减库存
//开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
} // 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder); // 7.返回订单id
return Result.ok(orderId);
}

当前操作虽然可以解决线程安全,但是效率太低,每个进来的线程都要锁一下,这里我们可以尝试以用户ID来作为锁条件,但是使用userId.toString(),是重新new了一个对象,这就造成每个线程进来都不一样,锁不住。

public static String toString(long i) {
if (i == Long.MIN_VALUE)
return "-9223372036854775808";
int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
char[] buf = new char[size];
getChars(i, size, buf);
return new String(buf, true);
}

这里我们使用userId.toString().intern()从常量池中查找数据。解决锁对象不一致的问题。

Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
.......
}
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
log.info("开始进行用户秒杀活动:{}",userId);
//一人一单逻辑
Integer count = voucherOrderService.query().eq("voucher_id", voucherId).eq("user_id", userId).count();
if(count > 0){
return Result.fail("该用户已参加活动。");
}
//开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if(!success){
return Result.fail("库存不足,正在补充!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
voucherOrder.setUserId(userId);
voucherOrder.setVoucherId(voucherId);
voucherOrderService.save(voucherOrder);
return Result.ok(orderId);
}
//这里事务还没有提交事务,但是锁已经释放了。
}

但是! 以上代码还是存在问题;

问题的原因在于当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题.

解决:把用户ID放入外部.将当前方法整体包裹起来,确保事务不会出现问题

@Slf4j
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
@Resource
private ISeckillVoucherService seckillVoucherService;
@Resource
private SeckillVoucherMapper seckillVoucherMapper;
@Resource
private IVoucherOrderService voucherOrderService;
@Resource
private RedisIdWorker redisIdWorker; @Override
public Result seckillVoucher(Long voucherId) {
//查询优惠卷库存信息
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
log.info("查询秒杀优惠卷:{}",voucher);
//判断秒杀是否开始:开始时间,结束时间
if(voucher.getBeginTime().isAfter(LocalDateTime.now())){
return Result.fail("活动暂未开始,敬请期待!");
}
if(voucher.getEndTime().isBefore(LocalDateTime.now())){
return Result.fail("活动已结束,请关注下次活动!");
}
//判断库存是否充足
if(voucher.getStock() < 1){
return Result.fail("库存不足,正在补充!");
}
Long userId = UserHolder.getUser().getId();
//这一步有问题
synchronized (userId.toString().intern()){
return this.createVoucherOrder(voucherId);
}
}
@Override
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
log.info("开始进行用户秒杀活动:{}",userId);
//一人一单逻辑
Integer count = voucherOrderService.query().eq("voucher_id", voucherId).eq("user_id", userId).count();
if(count > 0){
return Result.fail("该用户已参加活动。");
}
//开始扣减库存(通过乐观锁--->对应数据库中行锁实现)
boolean success = seckillVoucherMapper.updateDateByVoucherId(voucherId);
if(!success){
return Result.fail("库存不足,正在补充!");
}
//创建订单
VoucherOrder voucherOrder = new VoucherOrder();
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
voucherOrder.setUserId(userId);
voucherOrder.setVoucherId(voucherId);
voucherOrderService.save(voucherOrder);
return Result.ok(orderId);
}
}

但是但是!还是有问题。

因为我们调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务。

代理使用需要进行配置和包的引入:

<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjweaver</artifactId>
</dependency>

在启动类中加入:@EnableAspectJAutoProxy(exposeProxy = true);暴露代理对象,不设置无法获取代理对象;

在调用时,通过AopContext来获取当前代理对象。

synchronized (userId.toString().intern()){
//获取原始事务代理对象
IVoucherOrderService iVoucherOrderService = (IVoucherOrderService) AopContext.currentProxy();
return iVoucherOrderService.createVoucherOrder(voucherId);
}

Jmeter测试条件:100线程,循环1次,查看结果树和汇总报告可以看出;

查看数据库,一个用户秒杀成功一个订单,对比异常率,满足我们的需求。

【Redis场景4】单机环境下秒杀问题的更多相关文章

  1. BizTalk开发系列(三) 单机环境下的BizTalk Server 2006 R2安装

    大部分的开发环境都是在单机环境下进行的,今天整理了一下BizTalk Server 2006 R2在单机环境下的安装步骤. 1. 软件需求 在独立服务器中完整安装BizTalk Server 2006 ...

  2. 在Windows中单机环境下创建RabbitMQ集群

    本文根据:http://www.360doc.com/content/15/0312/17/20874412_454622619.shtml整理而来 RabbitMQ具有很好的消息传递性能,同时又是开 ...

  3. Linux单机环境下HDFS伪分布式集群安装操作步骤v1.0

    公司平台的分布式文件系统基于Hadoop HDFS技术构建,为开发人员学习及后续项目中Hadoop HDFS相关操作提供技术参考特编写此文档.本文档描述了Linux单机环境下Hadoop HDFS伪分 ...

  4. MySQL数据库管理(二)单机环境下MySQL Cluster的安装

    上文<MySQL数据库管理(一)MySQL Cluster集群简单介绍>对MySQL Cluster集群做了简要介绍.本文将教大家一步步搭建单机环境下的MySQL数据库集群. 一.单机环境 ...

  5. windows单机环境下配置tomcat集群

    场景:我们在平常联系中,需要涉及到tomcat中,但是电脑不够怎么办,肯定是在自己的电脑上模拟集群,就是装多个tomcat,这时候需要稍微配置下.如果是多个服务器,那不用配置,直接怼!!! 这里介绍的 ...

  6. 科谱,如何单机环境下合理的备份mssql2008数据库

    前言: 终于盼来了公司的自用服务器:1U.至强CPU 1.8G 4核.16G内存.500G硬盘 X 2 (RAID1);装了64位win2008,和64位mssql2008.仔细把玩了一天把新老业务系 ...

  7. 高并发关于微博、秒杀抢单等应用场景在PHP环境下结合Redis队列延迟入库

    第一步:创建模拟数据表. CREATE TABLE `test_table` ( `id` int(11) NOT NULL AUTO_INCREMENT, `uid` int(11) NOT NUL ...

  8. 初探Redis+Net在Windows环境下的使用

    Redis官网地址:https://redis.io/:Redis官方暂时不支持Windows环境,但是MicroSoft Open Tech group开发了一个Windows平台下运行的版本. R ...

  9. spark单机环境下运行一些解决问题

    ERROR1.hadoop依赖 [ERROR] - Failed to locate the winutils binary in the hadoop binary path   java.io.I ...

  10. 在tomcat集群环境下redis实现分布式锁

    上篇介绍了redis在集群环境下如何解决session共享的问题.今天来讲一下如何解决分布式锁的问题 什么是分布式锁? 分布式锁就是在多个服务器中,都来争夺某一资源.这时候我们肯定需要一把锁是不是 , ...

随机推荐

  1. python(27)反射机制

    1. 什么是反射? 它的核心本质其实就是基于字符串的事件驱动,通过字符串的形式去操作对象的属性或者方法 2. 反射的优点 一个概念被提出来,就是要明白它的优点有哪些,这样我们才能知道为什么要使用反射. ...

  2. Electron是什么以及可以做什么

    新用户购买<Electron + Vue 3 桌面应用开发>,加小册专属微信群,参与群抽奖,送<深入浅出Electron>.<Electron实战>作者签名版. 1 ...

  3. SpringBoot 02: 初识SpringBoot

    1. SpringBoot 产生原因 spring, springmvc框架使用上的一些缺点: 需要使用的大量的配置文件 还需要配置各种对象 需要把使用的对象放入到spring容器中才能使用对象 需要 ...

  4. 浅谈HTTP缓存与CDN缓存的那点事

    HTTP缓存与CDN缓存一直是提升web性能的两大利器,合理的缓存配置可以降低带宽成本.减轻服务器压力.提升用户的体验.而不合理的缓存配置会导致资源界面无法及时更新,从而引发一系列的衍生问题.本文将分 ...

  5. SQL-GROUP BY语句在MySQL中的一个错误使用被兼容的情况

    首先创建数据库hncu,建立stud表格. 添加数据: create table stud(sno varchar(30) not null primary key,sname varchar(30) ...

  6. ssh框架中文保存数据库MySQL乱码

    检查后台获取前端页面数据打印到console控制台无乱码:tomcat配置没有问题: 检查MySQL数据库编码设置:字符集:utf8 -- UTF-8 Unicode,排序规则:utf8_genera ...

  7. 前端开发:4、JavaScript简介、变量与常量、数据类型及内置方法、运算符、流程控制、循环结构、内置方法

    前端开发之JavaScript 目录 前端开发之JavaScript 一.JavaScript简介 二.JS基础 三.变量与常量 四.基本数据类型 1.数值类型 2.字符类型 3.布尔类型 五.特殊数 ...

  8. python软件开发目录规范

    软件开发目录规范 1.文件及目录的名字可以变换 但是思想是不变的 分类管理 2.目录规范主要规定开发程序的过程中针对不同的文件功能需要做不同的分类 myproject项目文件夹 1,bin文件夹 -- ...

  9. [奶奶看了都会]ChatGPT保姆级注册教程

    大家好,我是小卷 最近几天OpenAI发布的ChatGPT聊天机器人火出天际了,连着上了各个平台的热搜榜.这个聊天机器人最大的特点是模仿人类说话风格同时回答大量问题. 有人说ChatGPT是真正的人工 ...

  10. jmeter 之修改报告取样间隔时间以及APDEX 区间设置

    1.取样间隔时间设置 在jmeter 生成的报告中取样间隔默认设置的是1分钟,而非1秒,故样本间的间隔为1分钟,如下图所示: 取样间隔时间可通过修改bin/user.properties配置文件实现自 ...