Time Series Analysis (Best MSE Predictor & Best Linear Predictor)
Time Series Analysis
Best MSE (Mean Square Error) Predictor
对于所有可能的预测函数 \(f(X_{n})\),找到一个使 \(\mathbb{E}\big[\big(X_{n} - f(X_{n})\big)^{2} \big]\) 最小的 \(f\) 的 predictor。这样的 predictor 假设记为 \(m(X_{n})\), 称作 best MSE predictor,i.e.,
\]
我们知道:\(\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的解即为:
\]
证明:
基于 \(X_{n}\) 求 \(\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的最小值,实际上:
\]
- 私以为更严谨的写法是 \(\mathop{\text{argmin}}\limits_{f} ~ \mathbb{E}\Big[\Big(X_{n+h} - f\big( X_{n}\big)\Big)^{2} ~ | ~ \mathcal{F}_{n}\Big]\),其中 \(\left\{ \mathcal{F}_{t}\right\}_{t\geq 0}\) 为 \(\left\{ X_{t} \right\}_{t\geq 0}\) 相关的 natural filtration,but whatever。
等式右侧之部分:
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = \mathbb{E}[X_{n+h}^{2} ~ | ~ X_{n}] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
\end{align*}
\]
其中由于:
Var(X_{n+h} ~ | ~ X_{n}) & = \mathbb{E}\Big[ \big( X_{n+h} - \mathbb{E}\big[ X_{n+h}^{2} ~ | ~ X_{n} \big] \big)^{2} ~ \Big| ~ X_{n} \Big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - 2\mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] + \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big]
\end{align*}
\]
which gives that:
\]
因此,
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = Var(X_{n+h} ~ | ~ X_{n}) + \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
& = Var(X_{n+h} ~ | ~ X_{n}) + \Big( \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - f(X_{n}) \Big)^{2}
\end{align*}
\]
方差 \(Var(X_{n+h} ~ | ~ X_{n})\) 为定值,那么 optimal solution \(m(X_{n})\) 显而易见:
\]
此时 \(\left\{ X_{t} \right\}\) 为一个 Stationary Gaussian Time Series, i.e.,
X_{n+h}\\
X_{n}
\end{pmatrix} \sim N \begin{pmatrix}
\begin{pmatrix}
\mu \\
\mu
\end{pmatrix}, ~ \begin{pmatrix}
\gamma(0) & \gamma(h) \\
\gamma(h) & \gamma(0)
\end{pmatrix}
\end{pmatrix}
\]
那么我们有:
\]
其中 \(\rho(h)\) 为 \(\left\{ X_{t} \right\}\) 的 ACF,因此,
\]
注意:
若 \(\left\{ X_{t} \right\}\) 是一个 Gaussian time series,则一定能计算 best MSE predictor。而若 \(\left\{ X_{t} \right\}\) 并非 Gaussian time series,则计算通常十分复杂。
因此,我们通常不找 best MSE predictor,而寻找 best linear predictor。
Best Linear Predictor (BLP)
在 BLP 假设下,我们寻找一个形如 \(f(X_{n}) \propto aX_{n} + b\) 的 predictor。
则目标为:
\]
推导:
分别对 \(a, b\) 求偏微分:
\frac{\partial}{\partial b} S(a, b) & = \frac{\partial}{\partial b} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big] \\
& = -2 \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] \\
\end{align*}
\]
令:
\]
则:
-2 \cdot & \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] = 0 \\
\implies & \qquad \mathbb{E}[X_{n+h}] - a\mathbb{E}[X_{n}] - b = 0\\
\implies & \qquad \mu - a\mu - b = 0 \\
\implies & \qquad b^{\star} = (1 - a^{\star}) \mu
\end{align*}
\]
回代并 take partial derivative on \(a\):
\frac{\partial}{\partial a} S(a, b) & = \frac{\partial}{\partial a} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} - (1 - a)\mu \big)^{2} \big] \\
& = \frac{\partial}{\partial a} \mathbb{E} \Big[ \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)^{2} \Big] \\
& = \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] \\
\end{align*}
\]
令:
\]
则:
& \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) - a \big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big) \big(X_{n+h} - \mathbb{E}[X_{n+h}] \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big)^{2} \Big] \\
\implies & \qquad \text{Cov}(X_{n}, X_{n+h}) = a \cdot \text{Var}(X_{n}) \\
\implies & \qquad a^{\star} = \frac{\gamma(h)}{\gamma(0)} = \rho(h)
\end{align*}
\]
综上,time series \(\left\{ X_{n} \right\}\) 的 BLP 为:
\]
且 BLP 相关的 MSE 为:
\text{MSE} & = \mathbb{E}\big[ \big( X_{n+h} - l(X_{n}) \big)^{2} \big] \\
& = \mathbb{E} \Big[ \Big( X_{n+h} - \mu - \rho(h) \big( X_{n} - \mu \big) \Big)^{2} \Big] \\
& = \rho(0) \cdot \big( 1 - \rho^{2}(h) \big)
\end{align*}
\]
Time Series Analysis (Best MSE Predictor & Best Linear Predictor)的更多相关文章
- PP: Multilevel wavelet decomposition network for interpretable time series analysis
Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...
- A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang
Purpose: characterize the evolution of dynamical systems. In this paper, a novel method based on eps ...
- survey on Time Series Analysis Lib
(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...
- time series analysis
1 总体介绍 在以下主题中,我们将回顾有助于分析时间序列数据的技术,即遵循非随机顺序的测量序列.与在大多数其他统计数据的上下文中讨论的随机观测样本的分析不同,时间序列的分析基于数据文件中的连续值表示以 ...
- predict.glm -> which class does it predict?
Jul 10, 2009; 10:46pm predict.glm -> which class does it predict? 2 posts Hi, I have a question a ...
- Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls
Tasks: invest papers 3 篇. 研究主动权在我手里. I have to. 1. the benefit of complex network: complex networ ...
- Regression analysis
Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDv ...
- Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...
- Time Series data 与 sequential data 的区别
It is important to note the distinction between time series and sequential data. In both cases, the ...
- 7、RNAseq Downstream Analysis
Created by Dennis C Wylie, last modified on Jun 29, 2015 Machine learning methods (including cluster ...
随机推荐
- Websocket集群解决方案
最近在项目中在做一个消息推送的功能,比如客户下单之后通知给给对应的客户发送系统通知,这种消息推送需要使用到全双工的websocket推送消息. 所谓的全双工表示客户端和服务端都能向对方发送消息.不使用 ...
- mybatis一对多映射分页的问题
一对多可能会出现分页错误 条数不对的问题 解决方法: 将主表分页查询一次 SELECT aa.id,aa.name,bb.name FROM (SELECT * from tab1 ORDER BY ...
- 云原生之旅 - 14)遵循 GitOps 实践的好工具 ArgoCD
前言 Argo CD 是一款基于 kubernetes 的声明式的Gitops 持续部署工具. 应用程序定义.配置和环境都是声明式的,并受版本控制 应用程序部署和生命周期管理都是自动化的.可审计的,并 ...
- Java:自定义排序与sort()函数
自定义排序与Arrays.sort() 本篇题目来源:2022/11/13 Leetcode每日一题:https://leetcode.cn/problems/custom-sort-string 给 ...
- (工具) 交叉编译 gperftools及使用
交叉编译gperftools及使用 sudo apt-get install kcachegrind # 导出为 callgrind 格式时需要 sudo apt install doxygen-la ...
- 网络I/O模型 解读
网络.内核 网卡能「接收所有在网络上传输的信号」,但正常情况下只接受发送到该电脑的帧和广播帧,将其余的帧丢弃. 所以网络 I/O 其实是网络与服务端(电脑内存)之间的输入与输出 内核 查看内核版本 : ...
- .NET性能优化-ArrayPool同时复用数组和对象
前两天在微信后台收到了读者的私信,问了一个这样的问题,由于私信回复有字数和篇幅限制,我在这里统一回复一下.读者的问题是这样的: 大佬您好,之前读了您的文章受益匪浅,我们有一个项目经常占用 7-8GB ...
- Python数据类型+运算符
Python基础数据类型 上期练习讲解 # 练习一.想办法打印出jason l1 = [11, 22, 'kevin', ['tony', 'jerry', [123, 456, 'jason'] ] ...
- python什么是异常?如何处理异常
异常处理 什么是异常 异常是程序错误发生的信号.程序一旦出现错误,就会产生一个异常,如果程序中没有处理该异常,该异常就会抛出来,程序的运行也随即终止. 错误分为两种 1.语法错误 2.逻辑错误 如何处 ...
- 前端Ui设计常用WEB框架
目录 一:前端Ui常用框架 1.Bootstrap 2.Font Awesome框架 二.前端其他UI框架 1.Pure 2.bootstrap 3.EasyUI 4.Ant Design 5. La ...