SPPNet

首先介绍最为传统的alexNet,本文以及R-CNN有基于该网络上进行改进

1.输入224*224的图片,经过卷积池化等操作后在最后的卷积层会变成13*13的图片
2.后面接两个全连接层
3.最后接一个softmax进行打分分类(分成1000类是因为ImageNet上的图片总类为1000类)

SPPNet的介绍

  • 之前的卷积神经网络只能输入固定的尺寸进去因此不得不裁剪/变形。如图所示:

  • 本文作者提出对于输入图片的尺寸要求只需要在全连接层,对于卷积层没有要求,所以为了能够在输入的时候能够输入任意大小的图片作者在最后一层卷积层和全连接层之间加了一个特征金字塔池化层
  • 具体如下图所示:第一个为传统的CNN结构,下面为加了SPPNet的网络结构

作者为什么要这么加?

  1. 对于分类任务这样做就可以在输入图片使输入多尺度图片(将原图片变大变小等)扩充数据集
  2. 对于后面的目标检测任务可以改进传统的R-CNN,传统的R-CNN需要将图片通过select search选出大概两千个区域再通过CNN卷积层,非常耗时。而加上SPPNet后可以输入整张图片进入卷积层,节省时间
  • 形象理解如下图所示:

进入之后框如何画?

  • 作者发现,卷积后对应的位置并不会发生改变,每个卷积层会匹配响应的区域。如下图所示:

1.上图显示,车轮在原图中的位置在特征图上也会出现在响应的位置
2.上图卷积核匹配的响应的(轮廓,颜色,纹理)与(c)匹配的也相似
3.这样在目标检测使可以根据特征图画出该物体的位置,也就可以画出具体的框了

SPPNet的具体工作原理?

  • SPPNet需要在最后的卷积层将不同的尺寸的特征图变化到统一尺寸大小具体使怎么做的呢?
  • 在读论文使作者说到最大池化,我刚开始误解为是和前面的池化层一样通过滑动窗口实现。然而并不是。具体如何请看下图:
  1. 对于分类任务提取特征时:

  2. 对于目标检测任务提取特征时

1. 例如上图,特征池化层分别为(4*4,2*2,1*1)
2. 将4*4的池化层等比例映射到特征图中,然后再取16格中的每个小格的最大值,再将其拉伸为16*1的vector
3. 同理可得,将2*2的池化层等比例映射到特征图中,再取4格,最后将其拉伸为4*1的vector
4. 1*1的将其拉伸成1*1的vector
5. 最后形成的时(16+4+1)*256(256是深度)的向量

更为具体的如下图所示:

1.左边是8*8的特征图的池化层的划分和将其拉伸成一维向量
2.右边是任意尺度的特征图的划分
  • 综上所述:任意尺度的特征图都可以划分维固定大小的维度

总览:



SPPNet(特征金字塔池化)学习笔记的更多相关文章

  1. Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)

    在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...

  2. 【神经网络与深度学习】【计算机视觉】SPPNet-引入空间金字塔池化改进RCNN

    转自: https://zhuanlan.zhihu.com/p/24774302?refer=xiaoleimlnote 继续总结一下RCNN系列.上篇RCNN- 将CNN引入目标检测的开山之作 介 ...

  3. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  4. 空间金字塔池化(Spatial Pyramid Pooling,SPP)

    基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...

  5. 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

    想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...

  6. 空间金字塔池化 ssp-net

    <Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition>,这篇paper提出了空间金字 ...

  7. SPP空间金字塔池化技术的直观理解

    空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作. 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上 ...

  8. R语言函数化学习笔记6

    R语言函数化学习笔记 1.apply函数 可以让list或者vector的元素依次执行一遍调用的函数,输出的结果是list格式 2.sapply函数 原理和list一样,但是输出的结果是一个向量的形式 ...

  9. R语言函数化学习笔记3

    R语言函数化学习笔记3 R语言常用的一些命令函数 1.getwd()查看当前R的工作目录 2.setwd()修改当前工作目录 3.str()可以输出指定对象的结构(类型,位置等),同理还有class( ...

随机推荐

  1. 【Android开发】简单好用的阴影库 ShadowLayout

    先来看一张使用 ShadowLayout 库实现的各种阴影的效果图,如下图所示: 如上图所示,通过使用 ShadowLayout 可以控制阴影的颜色.范围.显示边界(上下左右四个边界).x 轴和 y ...

  2. ubantu系统之 在当前文件夹打开终端

    直接安装一个软件包 "nautilus-open-terminal"终端输入:sudo apt-get install nautilus-open-terminal重启系统!

  3. caioj 1031: [视频]递归1(全排列)【DFS】【全排列】

    题目大意:先给一个正整数 n( 1 < = n < = 10 ),输出1到n的所有全排列. 题解:这道题目我们可以用递归来实现,递归在图论中又称为"深度优先搜索"(De ...

  4. MySQL---char和varchar的区别

    char和varchar的区别 char表示定长, 即长度固定. varchar表示变长, 即长度可变. 当输入数据的长度小于定义的长度时, char会用空格填充, 而varchar则按照实际长度存储 ...

  5. /application/zabbix/sbin/zabbix_server: error while loading shared libraries: libmysqlclient.so.20: cannot open shared object file: No such file or directory

    在启动/usr/local/zabbix/sbin/zabbix_server 时报错如下 此时需要配置一个软连接指向该位置. ln -s /usr/local/mysql/lib/libmysqlc ...

  6. C# 静态常量(const)动态常量(static、readonly)用法区别

    C# 常量的命名方法 一个低级错误 readonly.const 代码 使用方式 支持类型 维护性 性能比较 优先使用 C# Static 与 Java Static C# Const 与 Java ...

  7. 将border 边框换成图片 border-image

    <template>   <div class="heart"></div> </template> <script> ...

  8. HTML续集

    计算机中PC:电脑 移动端:智能手机/智能电脑 html:超文本标记语言 图片标签<img src=" "> 图片的格式类型都有哪些? jpg,peg,gif(动图) ...

  9. 在IDEA中已经配置postgis数据库驱动并且能在Java类中连接数据库,但在servlet中无法连接数据库且导致Tomcat自动断开连接的解决方案

    最近在IDEA中用JDBC连接PostgreSQL数据库时遇到了这样一个奇怪的事情: 从PostgreSQL JDBC Driver官网下载好JDBC驱动之后,在IDEA的Project Struct ...

  10. 【阿里巴巴Java开发手册1.7.0(嵩山版)】编程规约&MySQL 数据库规约

    阿里巴巴Java开发手册1.7.0(嵩山版) 一.编程规约 (一)命名风格 所有命名不得以下划线和$开始和结束. 所有命名不得以拼音或拼音英文混合. 类名使用UpperCamelCase风格. 方法名 ...