机器学习基础:奇异值分解(SVD)
SVD 原理
奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,也是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。
有一个×的实数矩阵,我们想要把它分解成如下的形式:$A = U\Sigma V^T$
其中和均为单位正交阵,即有$=$和$=$,称为左奇异矩阵,称为右奇异矩阵,Σ仅在主对角线上有值,我们称它为奇异值,其它元素均为0。
上面矩阵的维度分别为$U \in R^{m\times m}$,$\ \Sigma \in R^{m\times n}$,$\ V \in R^{n\times n}$。
一般地Σ有如下形式
$$
\Sigma =
\left[
\begin{matrix}
\sigma_1 & 0 & 0 & 0 & 0\
0 & \sigma_2 & 0 & 0 & 0\
0 & 0 & \ddots & 0 & 0\
0 & 0 & 0 & \ddots & 0\
\end{matrix}
\right]_{m\times n}
$$
$_$ 越大意味着对应的 $′$ 的特征值 $\sigma_j^2$ 越大, 从而其主成分 (principal component) $_$ 的样本方差越大, 我们把方差大视为提供了更多信息.
求解U, Σ, V
假设我们的矩阵A是一个m×n的矩阵,则$A^TA$是方阵,求其特征值及特征向量:
$(A^TA)v_i = \lambda_i v_i$
得到矩阵$A^TA$的n个特征值和对应的n个特征向量$v$
因
$ATA=V\SigmaTU^TU\Sigma V^T$ =$V\Sigma^T\Sigma V^T= V\Sigma2VT$
将特征向量$v$张成一个$n×n$的矩阵$V$,就是SVD公式里面的$V$矩阵,$V$中的每个特征向量叫做$A$的右奇异向量。
同理:$(AA^T)u_i = \lambda_i u_i$,可得$U$矩阵。
求得$U , V$,然后求Σ,因Σ为奇异值矩阵,所以只需要求出每个奇异值$σ$即可。
$A=U\Sigma V^T \Rightarrow AV=U\Sigma V^TV \Rightarrow $
$AV=U\Sigma \Rightarrow Av_i = \sigma_i u_i \Rightarrow \sigma_i=Av_i / u_i$
其实特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
$\sigma_i = \sqrt{\lambda_i}$
所以不用$\sigma_i = Av_i / u_i$也可以通过求出$A^TA$的特征值取平方根来求奇异值。
SVD算法
输入:样本数据
输出:左奇异矩阵,奇异值矩阵,右奇异矩阵
1 计算特征值: 特征值分解$AA^T$,其中$A \in \mathbf{R}^{m\times n}$为原始样本数据
$AA^T=U\Sigma \SigmaTUT$
得到左奇异矩阵$U \in \mathbf{R}^{m \times m}$和奇异值矩阵$\Sigma' \in \mathbf{R}^{m \times m}$
2 间接求部分右奇异矩阵: 求$V' \in \mathbf{R}^{m \times n}$
利用A=UΣ′V′可得
$V' = (U\Sigma')^{-1}A = (\Sigma'){-1}UTA$
3 返回U, Σ′, V′,分别为左奇异矩阵,奇异值矩阵,右奇异矩阵。
Python 求解SVD
from numpy import array
from numpy import diag
from numpy import zeros
from scipy.linalg import svd
# define a matrix
A = array([
[1,2,3,4,5,6,7,8,9,10],
[11,12,13,14,15,16,17,18,19,20],
[21,22,23,24,25,26,27,28,29,30]])
print(A)
>>> A
array([[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30]])
# Singular-value decomposition
U, s, VT = svd(A)
# create m x n Sigma matrix
Sigma = zeros((A.shape[0], A.shape[1]))
# populate Sigma with n x n diagonal matrix
Sigma[:A.shape[0], :A.shape[0]] = diag(s)
# select
n_elements = 2
Sigma = Sigma[:, :n_elements]
VT = VT[:n_elements, :]
# reconstruct
B = U.dot(Sigma.dot(VT))
print(B)
>>> B
array([[ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.],
[11., 12., 13., 14., 15., 16., 17., 18., 19., 20.],
[21., 22., 23., 24., 25., 26., 27., 28., 29., 30.]])
# transform
T = U.dot(Sigma)
print(T)
>>> T
array([[-18.52157747, 6.47697214],
[-49.81310011, 1.91182038],
[-81.10462276, -2.65333138]])
T = A.dot(VT.T)
print(T)
[[-18.52157747 6.47697214]
[-49.81310011 1.91182038]
[-81.10462276 -2.65333138]]
参考:
https://www.cnblogs.com/pinard/p/6251584.html
https://www.cnblogs.com/endlesscoding/p/10033527.html
机器学习基础:奇异值分解(SVD)的更多相关文章
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
- 机器学习之-奇异值分解(SVD)原理详解及推导
转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
- 算法工程师<机器学习基础>
<机器学习基础> 逻辑回归,SVM,决策树 1.逻辑回归和SVM的区别是什么?各适用于解决什么问题? https://www.zhihu.com/question/24904422 2.L ...
- 矩阵奇异值分解(SVD)及其应用
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- 【疑难杂症】奇异值分解(SVD)原理与在降维中的应用
前言 在项目实战的特征工程中遇到了采用SVD进行降维,具体SVD是什么,怎么用,原理是什么都没有细说,因此特开一篇,记录下SVD的学习笔记 参考:刘建平老师博客 https://www.cnblogs ...
- Coursera 机器学习课程 机器学习基础:案例研究 证书
完成了课程1 机器学习基础:案例研究 贴个证书,继续努力完成后续的课程:
随机推荐
- BGP的四类属性详解
BGP的四类属性 公认必遵(Well-known mandatory) 要求所有运行BGP协议的设备都必须能识别,且在更新消息中必须包含. Origin(起源) 属性 用来标识路由信息的来源. 如果路 ...
- Vue 项目中常遇到的问题
刷新页面,传的参数类型变了 问题描述 vue-router通过query传参,比如:?fromWork=true&extraType=1,传过去的fromWork是boolean型,extra ...
- POI Excel索引是从0还是1开始??
this.workbook.getSheetAt(1).getFirstRowNum() // == 0 this.workbook.getSheetAt(1).getLastRowNum() // ...
- Error和Exception有什么区别?
Error表示系统级的错误和程序不必处理的异常,是恢复不是不可能但很困难的情况下的一种严重问题:比如内存溢出,不可能指望程序能处理这样的情况:Exception表示需要捕捉或者需要程序进行处理的异常, ...
- 数组有没有length()方法?String有没有length()方法?
数组没有length()方法,有length 的属性.String 有length()方法.JavaScript中,获得字符串的长度是通过length属性得到的,这一点容易和Java混淆.
- JVM 选项 -XX:+UseCompressedOops 有什么作用? 为什么要使用?
当你将你的应用从 32 位的 JVM 迁移到 64 位的 JVM 时,由于对象的指针从 32 位增加到了 64 位,因此堆内存会突然增加,差不多要翻倍.这也会对 CPU 缓存(容量比内存小很多)的数据 ...
- MCU选型
含义: MCU(Micro Controller Unit)中文名称为微控制单元,又称单片微型计算机(Single Chip Microcomputer),是指随着大规模集成电路的出现及其发展,将计算 ...
- 12 Web Development Trends That Will Dominate 2022
12 Web Development Trends That Will Dominate 2022 (mindinventory.com) Progressive Web Apps (PWAs) An ...
- python-使用函数求余弦函数的近似值
本题要求实现一个函数,用下列公式求cos(x)近似值,精确到最后一项的绝对值小于eps(绝对值小于eps的项不要加): cos(x)=0!x0−2!x2+4!x4−6!x6+... 函数接口定 ...
- java中如果我老是少捕获什么异常,如何处理?
马克-to-win:程序又一次在出现问题的情况下,优雅结束了.上例中蓝色部分是多重捕获catch.马克-to-win:观察上面三个例子,结论就是即使你已经捕获了很多异常,但是假如你还是少捕获了什么异常 ...