建议改为 省 选 原 题

题意:求所有生成树的边权 \(\gcd\) 之和。

看到 \(\gcd\) 立刻想反演。

\[\sum_T\gcd_{e \in T}e_v
\]

这里设 \(E=e_v(e \in T)\)

\[\sum_T\gcd_E
\]
\[\sum_T\sum_{d \mid e(e \in E)}\varphi(d)
\]
\[\sum_{d=1}^{\infty}\sum_{T,T \in E(e_v \in E(d \mid e_v))}
\]

也就是说只需要求边权为 \(d\) 的倍数的边构成的图的生成树个数即可,使用矩阵树。

稍微剪枝一下,复杂度大概是 \(O(240mn^3+V\log V)\),实测可以通过。

#include<cstdio>
#include<vector>
typedef unsigned ui;
const ui M=1e6+5,mod=1e9+7;
ui n,m,mx,top,G[65][65],u[3005],v[3005],pos[M],pri[M],phi[M];std::vector<ui>id[M];
inline ui Add(const ui&a,const ui&b){
return a+b>=mod?a+b-mod:a+b;
}
inline ui Del(const ui&a,const ui&b){
return b>a?a-b+mod:a-b;
}
inline ui pow(ui a,ui b){
ui ans=1;
for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;
return ans;
}
inline ui Gauss(){
ui i,j,k,d,inv,ans(1);
for(i=1;i^n;++i){
if(!G[i][i])for(j=i+1;j^n;++j)if(G[j][i]){
ans=mod-ans;std::swap(G[i],G[j]);break;
}
inv=pow(G[i][i],mod-2);ans=1ull*ans*G[i][i]%mod;
for(j=i+1;j^n;++j)for(d=1ull*(mod-G[j][i])*inv%mod,k=i;k^n;++k)G[j][k]=(G[j][k]+1ull*d*G[i][k])%mod;
}
return ans;
}
inline ui Solve(const ui&x){
ui i,j;
for(i=1;i^n;++i)for(j=1;j^n;++j)G[i][j]=i^j?mod:0;
for(i=1;(j=i*x)<=mx;++i)for(ui&x:id[j])++G[u[x]][u[x]],++G[v[x]][v[x]],--G[u[x]][v[x]],--G[v[x]][u[x]];
return Gauss();
}
signed main(){
ui i,j,x,S,val,ans;
scanf("%u%u",&n,&m);
for(i=1;i<=n;++i)for(j=1;j<=n;++j)G[i][j]=i^j?mod:0;
for(i=1;i<=m;++i){
scanf("%u%u%u",u+i,v+i,&val);id[val].push_back(i);if(val>mx)mx=val;
++G[v[i]][v[i]];++G[u[i]][u[i]];--G[u[i]][v[i]];--G[v[i]][u[i]];
}
ans=Gauss();
for(i=2;i<=mx;++i){
if(!pos[i])pos[pri[++top]=i]=top,phi[i]=i-1;S=0;
for(j=1;(x=i*j)<=mx;++j)S+=id[x].size();if(S>=n-1)ans=(ans+1ull*phi[i]*Solve(i))%mod;
for(j=1;j<=pos[i]&&(x=i*pri[j])<=mx;++j)phi[x]=phi[i]*(pri[j]-((pos[x]=j)!=pos[i]));
}
printf("%u",ans);
}

LGP3790题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 学习jsp篇:jsp Session介绍

    1.Session基本介绍 Session---会话,它是一个内置对象.会话打个比方说就是浏览网站:开始到结束,或者说购物从开始到结束. 2.Session机制 客户端在第一次请求服务端时,服务端会产 ...

  2. 什么是rest?restful?

    百度百科解释: rest:REST即表述性状态传递(英文:Representational State Transfer,简称REST)是Roy Fielding博士在2000年他的博士论文中提出来的 ...

  3. 基于GDAL库,读取.nc文件(以海洋表温数据为例)C++版

    对于做海洋数据处理的同学,会经常遇到nc格式的文件,nc文件的格式全称是NetCDF,具体的详细解释请查询官网[https://www.unidata.ucar.edu/software/netcdf ...

  4. Solution -「ZJOI 2020」「洛谷 P6631」序列

    \(\mathcal{Description}\)   Link.   给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...

  5. CentOS7 部署黑客帝国代码雨

    1024程序猿的节日,搞一个黑客帝国画面玩玩 [root@localhost ~]# yum -y install ncurses-devel [root@localhost ~]# yum -y i ...

  6. Vue 源码解读(1)—— 前言

    当学习成为了习惯,知识也就变成了常识. 感谢各位的 点赞.收藏和评论. 新视频和文章会第一时间在微信公众号发送,欢迎关注:李永宁lyn 文章已收录到 github 仓库 liyongning/blog ...

  7. Python语法进阶(2)- 正则表达式

    1.初识正则表达式 1.1.什么是正则表达式 正则表达式是一个特殊的字符序列,便于检查一个字符串是否与某种模式匹配:应用于字符串,在字符串中通过复杂的过滤筛选等操作得到我们想要的数据: 正则表达式的特 ...

  8. mysql之导入导出

    1.使用工具,类似Sqlyog,Navciate等导入导出数据 2.使用mysqldump导入导出 2.1 导出 2.1.1 导出表数据和表结构 mysqldump -u用户名 -p密码 数据库名 & ...

  9. 突破限制,CSS font-variation 可变字体的魅力

    今天,在 CodePen 上看到一个很有意思的效果 -- GSAP 3 ETC Variable Font Wave,借助了 JS 动画库 GSAP 实现,一起来看看: 我寻思着能否使用 CSS 复刻 ...

  10. Telnet拓展测试--在生产测试场景的应用

    本文关键词:流量测试.Telnet拓展测试.TCP/IP.时延 一.Telnet简介 Telnet协议是TCP/IP协议族中的一员,是Internet远程登录服务的标准协议和主要方式.它为用户提供了在 ...