#include <cstdio>

int Abs(int x) { return x < 0 ? -x : x; }
int Max(int x, int y) { return x > y ? x : y; }
int Min(int x, int y) { return x < y ? x : y; } int read() {
int x = 0, k = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while ('0' <= s && s <= '9') {
x = (x << 3) + (x << 1) + (s ^ 48);
s = getchar();
}
return x * k;
} void write(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
} void print(int x, char c) {
write(x);
putchar(c);
} const int MAXN = 2e2 + 5; struct Matrix {
typedef long long LL; int n, m, mod;
LL w[MAXN][MAXN]; void clear() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) w[i][j] = 0;
} void init() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
if (i == j)
w[i][j] = 1;
else
w[i][j] = 0;
} const Matrix operator*(const Matrix &x) const {
Matrix ans;
ans.n = n;
ans.m = x.m;
for (int i = 1; i <= ans.n; i++)
for (int j = 1; j <= ans.m; j++)
for (int k = 1; k <= m; k++) ans.w[i][j] = (ans.w[i][j] + (w[i][k] * x.w[k][j]) % mod) % mod;
return ans;
} LL Det() { \\ 这里是 mod 不为质数的行列式求法,若为质数可直接高斯消元。
LL ans = 1;
bool flag;
for (int i = 1; i <= n; i++) {
if (!w[i][i]) {
flag = false;
for (int j = i + 1; j <= n; j++)
if (w[j][i]) {
flag = true;
for (int k = i; k <= m; k++) w[i][k] ^= w[j][k] ^= w[i][k] ^= w[j][k];
ans = -ans;
break;
}
if (!flag)
return 0;
}
for (int j = i + 1; j <= n; j++)
while (w[j][i]) {
LL t = w[i][i] / w[j][i];
for (int k = i; k <= m; k++) {
w[i][k] = (w[i][k] - t * w[j][k]) % mod;
w[i][k] ^= w[j][k] ^= w[i][k] ^= w[j][k];
}
ans = -ans;
}
ans = ans * w[i][i] % mod;
}
return (ans + mod) % mod;
}
}

Template -「矩阵 - 行列式」的更多相关文章

  1. Template -「整体二分」

    写的简单.主要是留给自己做复习资料. 「BZOJ1901」Dynamic Rankings. 给定一个含有 \(n\) 个数的序列 \(a_1,a_2 \dots a_n\),需要支持两种操作: Q ...

  2. 「BZOJ 1297」「SCOI 2009」迷路「矩阵乘法」

    题意 边权\(w \in [1, 9]\)的\(n\)个结点的有向图,图上从\(1\)到\(n\)长度为\(d\)的路径计数,\(n \leq 10\). 题解 如果边权为\(1\)很经典,设\(f[ ...

  3. Template -「网络流 & 二分图」

    EK. 很少用到,知道思想即可. 懒得写封装的屑. queue<int> q; int Cap[MAXN][MAXN], Flow[MAXN][MAXN], Aug[MAXN], fa[M ...

  4. 【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症

    LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数 ...

  5. 「AHOI2014/JSOI2014」拼图

    「AHOI2014/JSOI2014」拼图 传送门 看到 \(n \times m \le 10^5\) ,考虑根号分治. 对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \( ...

  6. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  7. 「zigbee - 1」工欲善其事必先利其器 - IAR for 8051 IDE customization

    最近在实验室做一些 Zigbee 相关的事情,然而一直没在博客上记录啥东西,也不像原来在公司有动力在 Confluence wiki 上扯东扯西.直到前些阵子,跑到 feibit 论坛上(国内较大的一 ...

  8. 「LOJ2000~2023」各省省选题选做

    「LOJ2000~2023」各省省选题选做 「SDOI2017」数字表格 莫比乌斯反演. 「SDOI2017」树点涂色 咕咕咕. 「SDOI2017」序列计数 多项式快速幂. 我们将超过 \(p\) ...

  9. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

随机推荐

  1. 【Hadoop】10、Flume组件

    目录 Flume组件安装配置 1.下载和解压 Flume 2.Flume 组件部署 3.使用 Flume 发送和接受信息 Flume组件安装配置 1.下载和解压 Flume # 传Flume安装包 [ ...

  2. 5分钟了解二叉树之AVL树

    转载请注明出处:https://www.cnblogs.com/morningli/p/16033733.html AVL树是带有平衡条件的二叉查找树,其每个节点的左子树和右子树的高度最多相差1.为了 ...

  3. Oracle中通过逗号分割字符串并转换成多行

    通过逗号对字符串字段进行分割,并返回多行,通过使用regexp_substr()函数实现. SQL示例: select regexp_substr(q.nums, '[^,]+', 1, rownum ...

  4. unity---脚本代码报错

    同版本编辑器在不同VS版本下会报错问题解决 解决方法 报错情况 解决方法 打开Unity --->Preferences--->External Tools然后点击:Regenerate ...

  5. 【leetcode】239. 滑动窗口最大值

    目录 题目 题解 三种解法 "单调队列"解法 新增.获取最大值 删除 代码 题目 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以 ...

  6. python之模块(os、sys、json、subprocess)

    目录 os模块 sys模块 json模块 subprocess模块 os模块 os模块主要是与操作系统打交道. 导入os模块 import os 创建单层文件夹,路径必须要存在 os.mkdir(路径 ...

  7. 使用多线程提高REST服务器性能

    异步处理REST服务 1.使用Runnable异步处理Rest服务 释放主线程,启用副线程进行处理,副线程处理完成后直接返回请求 主要代码 import java.util.concurrent.Ca ...

  8. 如何在 pyqt 中捕获并处理 Alt+F4 快捷键

    前言 如果在 Windows 系统的任意一个窗口中按下 Alt+F4,默认行为是关闭窗口(或者最小化到托盘).对于使用了亚克力效果的窗口,使用 Alt+F4 最小化到托盘,再次弹出窗口的时候可能出现亚 ...

  9. 在linux上开启酸酸乳,未完待续

    在服务器调试深度学习环境的时候总需要下载conda的包,一直以来都觉得是因为国内访问慢,于是想在服务器上开 ,或者ssr.由于过去用ssr多一些,于是想了解ssr on linux. 1.首先win1 ...

  10. 充电log关键词

    充电LOG 1.healthd 2.暗码log 1.healthd healthd:battery l=96 v=4378 t=20.0 h=2 st=3 c=55 fc=4709000 cc=15 ...