Pytorch 中 tensor的维度拼接
torch.stack() 和 torch.cat() 都可以按照指定的维度进行拼接,但是两者也有区别,torch.satck() 是增加新的维度进行堆叠,即其维度拼接后会增加一个维度;而torch.cat() 是在原维度上进行堆叠,即其维度拼接后的维度个数和原来一致。具体说明如下:
torch.stack(input,dim)
input: 待拼接的张量序列组(list or tuple),拼接的tensor的维度必须要相等,即tensor1.shape = tensor2.shape
dim: 在哪个新增的维度上进行拼接,不能超过拼接后的张量数据的维度大小,默认为 0
import torch
x1 = torch.tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
x2 = torch.tensor([[10, 20, 30],
[40, 50, 60],
[70, 80, 90]])
print(torch.stack((x1,x2),dim=0).shape)
print(torch.stack((x1,x2),dim=1).shape)
print(torch.stack((x1,x2),dim=2).shape)
print(torch.stack((x1,x2),dim=0))
print(torch.stack((x1,x2),dim=1))
print(torch.stack((x1,x2),dim=2))
>> torch.Size([2, 3, 3]) # 2 表示是有两个tensor的拼接,且在第一个维度的位置拼接
>> torch.Size([3, 2, 3])
>> torch.Size([3, 3, 2])
>> tensor([[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9]],
[[10, 20, 30],
[40, 50, 60],
[70, 80, 90]]])
>> tensor([[[ 1, 2, 3],
[10, 20, 30]],
[[ 4, 5, 6],
[40, 50, 60]],
[[ 7, 8, 9],
[70, 80, 90]]])
>> tensor([[[ 1, 10],
[ 2, 20],
[ 3, 30]],
[[ 4, 40],
[ 5, 50],
[ 6, 60]],
[[ 7, 70],
[ 8, 80],
[ 9, 90]]])
torch.cat(input, dim)
input: 待拼接的张量序列组(list or tuple),拼接的tensor的维度必须要相等,即tensor1.shape = tensor2.shape
dim: 在哪个已存在的维度上进行拼接,不能超过拼接后的张量数据的维度大小(即原来的维度大小),默认为 0
import torch
x1 = torch.tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
x2 = torch.tensor([[10, 20, 30],
[40, 50, 60],
[70, 80, 90]])
print(torch.cat((x1,x2),dim=0).shape)
print(torch.cat((x1,x2),dim=1).shape)
print(torch.cat((x1,x2),dim=0))
print(torch.cat((x1,x2),dim=1))
>> torch.Size([6, 3])
>> torch.Size([3, 6])
>> tensor([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 20, 30],
[40, 50, 60],
[70, 80, 90]])
>> tensor([[ 1, 2, 3, 10, 20, 30],
[ 4, 5, 6, 40, 50, 60],
[ 7, 8, 9, 70, 80, 90]])
Pytorch 中 tensor的维度拼接的更多相关文章
- pytorch中tensor数据和numpy数据转换中注意的一个问题
转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277] 在pyt ...
- 对pytorch中Tensor的剖析
不是python层面Tensor的剖析,是C层面的剖析. 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库. 可以在torch的github上看到相关文档.看了半天 ...
- [Pytorch]Pytorch中tensor常用语法
原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到 ...
- pytorch中tensor张量数据基础入门
pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot ...
- pytorch中tensor的属性 类型转换 形状变换 转置 最大值
import torch import numpy as np a = torch.tensor([[[1]]]) #只有一个数据的时候,获取其数值 print(a.item()) #tensor转化 ...
- pytorch中tensor张量的创建
import torch import numpy as np print(torch.tensor([1,2,3])) print(torch.tensor(np.arange(15).reshap ...
- pytorch 调整tensor的维度位置
target.permute([0, 3, 1, 2]) 一定要使用permute以及中括号 一些在我这里没起到作用的网上的例子: 1. https://blog.csdn.net/zouxiaolv ...
- tensorflow中tensor的静态维度和动态维度
tf中使用张量(tensor)这种数据结构来表示所有的数据,可以把张量看成是一个具有n个维度的数组或列表,张量会在各个节点之间流动,参与计算. 张量具有静态维度和动态维度. 在图构建过程中定义的张量拥 ...
- pytorch 中的数据类型,tensor的创建
pytorch中的数据类型 import torch a=torch.randn(2,3) b=a.type() print(b) #检验是否是该数据类型 print(isinstance(a,tor ...
随机推荐
- CSS展开收起
有一个问题是,在上述例子中,把段落内容的"浮动元素"去掉后,段落最后从"行"字开始换行了,"收起"却不换行,也就是会存在有两个字内容看不见情 ...
- Python图像处理:如何获取图像属性、兴趣ROI区域及通道处理
摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...
- django-rest-framework 基础三 认证、权限和频率
django-rest-framework 基础三 认证.权限和频率 目录 django-rest-framework 基础三 认证.权限和频率 1. 认证 1.1 登录接口 1.2 认证 2. 权限 ...
- 被迫开始学习Typescript —— class
TS 的 class 看起来和 ES6 的 Class 有点像,基本上差别不大,除了 可以继承(实现)接口.私有成员.只读等之外. 参考:https://typescript.bootcss.com/ ...
- 重新认识 MSBuild - 1
前言 很多人一谈到 MSBuild,脑子里就会出现 "XML"."只能用 VS 的属性框图形界面操作"."可定制性和扩展性差" 和 &quo ...
- 一些GIT操作的技巧
一.git stash 我们有时会遇到这样的情况,正在分支a上开发一半,然后分支b上发现Bug,需要马上处理.这时候分支a上的修改怎么办呢,git add 是不行的,有的git客户端版本会提示还有ad ...
- linux篇-linux LAMP yum版安装
LAMP(linux.apache.mysql.php),是四个套件的合成,简单讲就是要把php运行在linux上,需要依赖apache和mysql数据库. 1 准备好一个linux系统(centos ...
- 记 iTextSharp 提取中文的问题
原文 问题 下面的代码中 currentText 能提取到大部分汉字 但是字体为 Non-Embedded Font: AdobeSongStd-Light(Horizontal) 的汉字提取不到 P ...
- 没错,就是Access-Control-Allow-Origin,跨域
服务端添加: <add name="Access-Control-Allow-Origin" value="*" /><add name=&q ...
- 用t-SNE进行流形学习(digits数据集)
流行学习算法: 是一类用于可视化的算法,它允许进行更复杂的映射,通常也可以给出更好的可视化. t-SNE算法是其中一种. PCA是用于变换数据的首选方法,也可以进行可视化,但它的性质(先旋转然后减少方 ...