作者:京东科技 文涛

全文较长共6468字,语言通俗易懂,是一篇具有大纲性质的关于多线程的梳理,作者从历史演进的角度讲了多线程相关知识体系,让你知其然知其所以然。

前言

2022年09月22日,JDK19发布了,此版本最大的亮点就是支持虚拟线程,从此轻量级线程家族再添一员大将。虚拟线程使JVM摆脱了通过操作系统调度线程的束缚,由JVM自身调度线程。其实早期sun在Solaris操作系统的虚拟机中实现过JVM调度线程,基于其复杂性,和可维护性考虑,最终都回归到了由操作系统调度线程的模式。

长安归来锦衣客,昨日城南起新宅。回想这一路走来,关于多线程的概念令人烟花缭乱,网上相关讲解也不胜枚举,但总感觉缺少一个全局性的视角。为此笔者系统性的梳理了Java关于多线程的演进史,希望对你掌握多线程知识有帮助。

本文不讲什么:

1 不讲某些技术点的详细实现原理,不拆解源码,不画图,如果从本文找到了你感兴趣的概念和技术可以自行搜索 2 不讲支持并发性的库和框架,如Quasar、Akka、Guava等

本文讲什么

1 讲JDK多线程的演进历史 2 讲演进中某些技术点的功能原理及背景,以及解决了什么问题 3 讲针对某些技术点笔者的看法,欢迎有不同看法的人在评论区讨论

里程碑

老规矩,先上个统计表格。其中梳理了历代JDK中关于线程相关的核心概念。在这里,做一个可能不太恰当的比喻,可以将多线程的演进映射到汽车上,多线程的演进分别经历了手动档时代(JDK1.4及以下),自动档时代(JDK5-JDK18),自动驾驶时代(JDK19及以后)。这个比喻只为了告诉读者JDK5以后可以有更舒服姿势的驾驭多线程,JDK19以后更是突破了单纯的舒服,它给IO密集型服务的性能带来了质的飞跃。

时代 版本 发布时间 核心概念
手动档 JDK1.0 1996-01-23 Thread和Runnable
手动档 JDK1.2 1998-12-04 ThreadLocal、Collections
自动档 JDK1.5/5.0 2004-09-30 明确Java内存模型、引入并发包
自动档 JDK1.6/6.0 2006-12-11 synchronized优化
自动档 JDK1.7/7.0 2011-07-28 Fork/Join框架
自动档 JDK1.8/8.0 2014-03-18 CompletableFuture、Stream
自动档 JDK1.9/9.0 2014-09-08 改善锁争用机制
自动档 JDK10 2018-03-21 线程-局部管控
自动档 JDK15 2020-09-15 禁用和废弃偏向锁
自动驾驶 JDK19 2022-09-22 虚拟线程

手动档时代

JDK1.4及以下笔者称之为多线程“手动档”的时代,也叫原生多线程时代。线程的操作还相对原生,没有线程池可用。研发人员必须手写工具避免频繁创建线程造成资源浪费,手动对共享资源加锁。也正是这个时代酝酿了许多优秀的多线程框架,最有名的被JDK5.0采纳了。

JDK 1.0 Thread和Runnable

1996年1月的JDK1.0版本,从一开始就确立了Java最基础的线程模型,并且,这样的线程模型再后续的修修补补中,并未发生实质性的变更,可以说是一个具有传承性的良好设计。抢占式和协作式是两种常见的进程/线程调度方式,操作系统非常适合使用抢占式方式来调度它的进程,它给不同的进程分配时间片,对于长期无响应的进程,它有能力剥夺它的资源,甚至将其强行停止。采用协作式的方式,需要进程自觉、主动地释放资源,在这种调度方式下,可能一个执行时间很长的线程使得其他所有需要CPU的线程”饿死”。Java hotspot虚拟机的调度方式为抢占式调用,因此Java语言一开始就采用抢占式线程调度的方式。JDK 1.0中创建线程的方式主要是继承Thread类或实现Runnable接口,通过对象实例的start方法启动线程,需要并行处理的代码放在run方法中,线程间的协作通信采用简单粗暴的stop/resume/suspend这样的方法。

如何解释stop/resume/suspend的概念呢?就是主线程可以直接调用子线程的终止,暂停,继续方法。如果你小时候用过随身听,上面有三个按键,终止,暂停,继续。想象一下你正在同时听3个随身听,三个随身听就是三个子线程,你就是主线程,你可以随意控制这三个设备的启停。

这一套机制有个致命的问题,就是容易发生死锁,原因在于当线程A锁定了某个资源,还未释放时,被主线程暂停了(suspend方法并不会释放锁),此时线程B如果想占有这个资源,只能等待线程A执行继续操作(resume)后释放资源,否则将永远得不到,发生死锁。

JDK 1.2

粗暴的stop/resume/suspend机制在这个版本被禁止使用了,转而采用wait/notify/sleep这样的多条线程配合行动的方式。值得一提的是,在这个版本中,原子对象AtomicityXXX已经设计好了,主要是解决i++非原子性的问题。ThreadLocal和Collections的加入增加了多线程使用的姿势,因为这两项技术,笔者称它为Java的涡轮增压时代。

ThreadLocal

ThreadLocal是一种采用无锁的方式实现多线程共享线程不安全对象的方案。它并不能解决“银行账户或库存增加、扣减”这类问题,它擅长将具有“工具”属性的类,通过复本的方式安全的执行“工具”方法。典型的如SimpleDateFormat、库连接等。值得一提的是它的设计非常巧妙,想像一下如果让你设计,一般的简单思路是:在ThreadLocal里维护一个全局线程安全的Map,key为线程,value为共享对象。这样设计有个弊端就是内存泄露问题,因为该Map会随着越来越多的线程加入而无限膨胀,如果要解决内容泄露,必须在线程结束时清理该Map,这又得强化GC能力了,显然投入产出比不合适。于是,ThreadLocal就被设计成Map不由ThreadLocal持有,而是由Thread本身持有。key为ThreadLocal变量,value为值。每个Thread将所用到的ThreadLoacl都放于其中(当然此设计还有其它衍生问题在此不表,感兴趣的同学可以自行搜索)。

Collections

Collections工具类在这个版本被设计出来了,它包装了一些线程安全集合如SynchronizedList。在那个只有Hashtable、Vector、Stack等线程安全集合的年代,它的出现也是具有时代意义的。Collections工具的基本思想是我帮你将线程不安全的集合包装成线程安全的,这样你原有代码升级改造不必花很多时间,只需要在集合创建的时候用我提供方法初始化集合即可。比较像汽车的涡轮增压技术,在发动机排量不变的情况下,增加发动机的功率和扭矩。Java的涡轮增压时代到来了_

自动档时代

JDK 5.0

引入并发包

Doug Lea,中文名为道格·利。是美国的一个大学教师,大神级的人物,J.U.C就是出自他之手。JDK1.5之前,我们控制程序并发访问同步代码只能使用synchronized,那个时候synchronized的性能还没优化好,性能并不好,控制线程也只能使用Object的wait和notify方法。这个时候Doug Lea给JCP提交了JSR-166的提案,在提交JSR-166之前,Doug Lea已经使用了类似J.U.C包功能的代码已经三年多了,这些代码就是J.U.C的原型。

J.U.C提供了原子化对象、锁及工具套装、线程池、线程安全容器等几大类工具。研发人员可灵活的使用任意能力搭建自己的产品,进可使用ReentrantLock搭建底层框架,退可直接使用现成的工具或容器进行业务代码编写。站在历史的角度去看,J.U.C在2004年毫无争议可以称为“尖端科技产品”。为Java的推广立下了悍马功劳。Java的自动档时代到来了,就好比自动档的汽车降低司机的门槛一样,J.U.C大大降低了程序员使用多线程的门槛。这是个开创了一个时代的产品。

当然J.U.C同样存在一结瑕疵:

CPU开销大:如果自旋CAS长时间地不成功,则会给CPU带来非常大的开销。

解决方案:在JUC中有些地方就限制了CAS自旋的次数,例如BlockingQueue的SynchronousQueue。

ABA问题:如果一个值原来是A,变成了B,然后又变成了A,在CAS检查时会发现没有改变,但实际它已经改变,这就是ABA问题。大部分情况下ABA问题不会影响程序并发的正确性。

解决方案:每个变量都加上一个版本号,每次改变时加1,即A —> B —> A,变成1A —> 2B —> 3A。Java提供了AtomicStampedReference来解决。AtomicStampedReference通过包装[E,Integer]的元组来对对象标记版本戳(stamp),从而避免ABA问题。

只能保证一个共享变量原子操作:CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。

解决方案:比如需要保证3个变量共同进行原子性的更新,就不得不使用Synchronized了。还可以考虑使用AtomicReference来包装多个变量,通过这种方式来处理多个共享变量的情况。

明确Java内存模型

此版本的JDK重新明确了Java内存模型,在这之前,常见的内存模型包括连续一致性内存模型和先行发生模型。 对于连续一致性模型来说,程序执行的顺序和代码上显示的顺序是完全一致的。这对于现代多核,并且指令执行优化的CPU来说,是很难保证的。而且,顺序一致性的保证将JVM对代码的运行期优化严重限制住了。

但是此版本JSR 133规范指定的先行发生(Happens-before)使得执行指令的顺序变得灵活:

在同一个线程里面,按照代码执行的顺序(也就是代码语义的顺序),前一个操作先于后面一个操作发生 对一个monitor对象的解锁操作先于后续对同一个monitor对象的锁操作 对volatile字段的写操作先于后面的对此字段的读操作 对线程的start操作(调用线程对象的start()方法)先于这个线程的其他任何操作 一个线程中所有的操作先于其他任何线程在此线程上调用 join()方法 如果A操作优先于B,B操作优先于C,那么A操作优先于C

而在内存分配上,将每个线程各自的工作内存从主存中独立出来,更是给JVM大量的空间来优化线程内指令的执行。主存中的变量可以被拷贝到线程的工作内存中去单独执行,在执行结束后,结果可以在某个时间刷回主存: 但是,怎样来保证各个线程之间数据的一致性?JLS(Java Language Specification)给的办法就是,默认情况下,不能保证任意时刻的数据一致性,但是通过对synchronized、volatile和final这几个语义被增强的关键字的使用,可以做到数据一致性。

JDK 6.0 synchronized优化

作为“共和国长子”synchronized关键字,在5.0版本被ReentrantLock压过了风头。这个版本必须要扳回一局,因此JDK 6.0对锁做了一些优化,比如锁自旋、锁消除、锁合并、轻量级锁、所偏向等。本次优化是对“精细化管理”这个理念的一次诠释。没优化之前被synchronized加锁的对象只有两个状态:无锁,有锁(重量级锁)。优化后锁一共存在4种状态,级别从低到高依次是:无锁、偏向锁、轻量级锁、重量级锁。这几个状态随着竞争的情况逐渐升级,但是不能降级,目的是为了提高获取锁和释放锁的效率(笔者认为其实是太复杂了,JVM研发人员望而却步了)。

这一次优化让synchronized扬眉吐气,自此再也不允许别人说它的性能比ReentrantLock差了。但好戏还在后头,偏向锁在JDK 15被废弃了(─.─||)。笔者认为synchronized吃亏在了它只是个关键字,JVM负责它底层的动作,到底应用程序加锁的时候什么样的姿势舒服,得靠JVM“猜”。ReentrantLock就不同了,它将这件事直接交给程序员去处理了,你希望公平那就用公平锁,你希望你的不公平,那你就用非公平锁。设计层面算是一种偷懒,但同时也是一种灵活。

JDK 7.0 Fork/Join框架

Fork/Join的诞生也是一个比较先进的产品,它的核心竞争力在于,支持递归式的任务拆解,同时将各任务结果进行合并。但它是一个既熟悉又陌生的技术,熟悉在于它被应用到各种地方,比如接下来JDK8.0要讲的CompletableFuture和Stream;陌生在于我们似乎很少在业务研发过程中使用到它。

甚至有人甚至觉得它鸡肋。笔者的观点是,你如果是业务需求相关的研发,它是鸡肋的,因为基本用不到,大批数据量的场景有数仓那套工具,其它场景可以用线程池代替;如果你是中间件框架编写相关的研发,它不鸡肋,兴许会用到。中文互联网上很少有人质疑这项技术,但国外已经有人在讨论,感兴趣的可以直接跳转查阅 Is the Fork-Join framework in Java broken?

JDK 8.0

此版本的发布对于Java来说是划时代的,以至于现在全世界在运行的Java程序里此版本占据了一半以上。但多线程相关的更新不如JDK5.0那么具有颠覆性。此版本除了增加了一些原子对象之外 ,最亮眼的便是以下两项更新。

CompletableFuture

网上关于CompletableFuture相关介绍很多,大多是讲它原理及怎么用。但是笔者始终不明白一个问题:为什么在有那么多线程池工具的情况下,还会有CompletableFuture的出现,它解决了什么痛点?它的核心竞争力到底是什么?相信你如果进行过思考也会提出这个问题,没关系,笔者已经帮你找到了答案。

结论:CompletableFuture的核心竞争力是任务编排。CompletableFuture继承Future接口特性,可以进行并发执行任务等特性这些能力都是有可替代性的。但它的任务编排能力无可替代,它的核心API中包括了构造任务链,合并任务结果等都是为了任务编排而设计的。所以JDK之所以在此版本引入此框架,主要是解决业务开发中越来越痛的任务编排需求。

最后多说一句,CompletableFuture底层使用了Fork/Join框架实现。

Stream

《架构整洁之道》里曾提到有三种编程范式,结构化编程(面向过程编程)、面向对象编程、函数式编程。Stream是函数式编程在Java语言中的一种体现,笔者认为,初级程序员向中级进阶的必经之路就是攻克Stream,初次接触Stream肯定特别不适应,但如果熟悉以后你将打开一个编程方式的新思路。作为研发人员经常混淆三个概念,函数式编程、Stream、Lambda表达式,总以为他们三个说的是一回事。以下是笔者的理解:

•函数式编程是一种编程思想,各种编程语言中都有该思想的实践

•Stream是JDK8.0的一个新特性,也可以理解新造了个概念,目的就是迎合函数式编程这种思想,通过Stream的形式可以在集合类上实现函数式编程

•Lambda 表达式(lambda expression)是一个匿名函数,通过它可以更简洁高效的表达函数式编程

那么说了这么多,Stream和多线程什么关系?Stream中的相关并行方法底层是使用了Fork/Join框架实现的。《Effective Java》中有一条相关建议“谨慎使用Stream并行”,理由就是因为所有的并行都是在一个通用的Fork/Join池中运行的,一个pipeline运行异常,可能损害其他不相关部分性能。

JDK 9.0

改善锁争用机制

锁争用限制了许多Java多线程应用性能,新的锁争用机制改善了Java对象监视器的性能,并得到了多种基准测试的验证(如Volano),这类测试可以估算JVM的极限吞吐量。实际中, 新的锁争用机制在22种不同的基准测试中都得到了出色的成绩。如果新的机制能在Java 9中得到应用的话, 应用程序的性能将会大大提升。简单的解释就是当多个线程发生锁争用时,优化之前:晚到的线程统一采用相同的标准流程进行锁等待。优化后:JVM识别出一些可优化的场景时直接让晚到的线程进行“VIP通道”式的锁抢占。

详细解释请参考: Contended locks explained – a performance approach

响应式流

响应式流(Reactive Streams)是一种以非阻塞背压方式处理异步数据流的标准,提供一组最小化的接口,方法和协议来描述必要的操作和实体。

什么叫非阻塞背压? 背压是back pressure的缩写,简单讲,生产者给消费者推送数据,当消费者处理不动了,告知生产者,此时生产者降低生产速率,此机制使用阻塞的方式实现最简单,即推送时直接返回压力数据。非阻塞方式实现增加了设计的复杂度,同时提高了性能。 PS:感觉背压这个词翻译的不好,不能望文生义。反压是不是更好_

为了解决消费者承受巨大的资源压力(pressure)而有可能崩溃的问题,数据流的速度需要被控制,即流量控制(flow control),以防止快速的数据流不会压垮目标。因此需要反压即背压(back pressure),生产者和消费者之间需要通过实现一种背压机制来互操作。实现这种背压机制要求是异步非阻塞的,如果是同步阻塞的,消费者在处理数据时生产者必须等待,会产生性能问题。

响应式流(Reactive Streams)通过定义一组实体,接口和互操作方法,给出了实现非阻塞背压的标准。第三方遵循这个标准来实现具体的解决方案,常见的有Reactor,RxJava,Akka Streams,Ratpack等。

JDK 10 线程-局部管控

Safepoint及其不足:

Safepoint是Hotspot JVM中一种让所有应用程序停止的一种机制。JVM为了做一些底层的工作,必须要Stop The World,让应用线程都停下来。但不能粗暴的直接停止,而是会给应用线程发送个指令信号告诉他,你该停下了。此时应用线程执行到一个Safepoint点时就会听从指令并响应。这也是为什么叫Safepoint。之所以加safe,是强调JVM要做一些全局的安全的事情了,所以给这个点加了个safe。

全局的安全的事情包括以下: 1、垃圾清理暂停 2、代码去优化(Code deoptimization)。 3、flush code cache。 4、类文件重新定义时(Class redefinition,比如热更新 or instrumentation)。 5、偏向锁的取消(Biased lock revocation)。 6、各种debug操作(比如: 死锁检查或者stacktrace dump等)。

然而,让所有线程都到就近的safepoint停下来本身就需要较长的时间。而且让所有线程都停下来是不是显得太过鲁莽和专断了呢。为此Java10就引入了一种可以不用stop all threads的方式,就是线程-局部管控(Thread Local Handshake)。

比如以下是不需要stop所有线程就可以搞定的场景: 1、偏向锁撤销。这个事情只需要停止单个线程就可以撤销偏向锁,而不需要停止所有的线程。 2、减少不同类型的可服务性查询的总体VM延迟影响,例如获取具有大量Java线程的VM上的所有线程的stack trace可能是一个缓慢的操作。 3、通过减少对信号(signals)的依赖来执行更安全的stack trace采样。 4、使用所谓的非对称Dekker同步技术,通过与Java线程握手来消除一些内存障碍。 例如,G1和CMS里使用的“条件卡标记码”(conditional card mark code),将不再需要“内存屏障”这个东东。这样的话,G1发送的“写屏障(write barrier)”就可以被优化, 并且那些尝试要规避“内存屏障”的分支也可以被删除了。

JDK 15 禁用和废弃偏向锁

为什么要废弃偏向锁?偏向锁在过去带来的的性能提升,在现在看来已经不那么明显了。受益于偏向锁的应用程序,往往是使用了早期 Java 集合 API的程序(JDK 1.1),这些 API(Hashtable 和 Vector) 每次访问时都进行同步。JDK 1.2 引入了针对单线程场景的非同步集合(HashMap 和 ArrayList),JDK 1.5 针对多线程场景推出了性能更高的并发数据结构。这意味着如果代码更新为使用较新的类,由于不必要同步而受益于偏向锁的应用程序,可能会看到很大的性能提高。此外,围绕线程池队列和工作线程构建的应用程序,性能通常在禁用偏向锁的情况下变得更好。

以下以使用了Hashtable 和 Vector的API实现: java.lang.Classloader uses Vector java.util.Properties extends Hashtable java.security.Provider extends Properties java.net.URL uses Hashtable java.net.URConnection uses Hashtable java.util.ZipOutputStream uses Vector javax.management.timer.TimerMBean has Vector on the interface

自动驾驶时代

虚拟线程使Java进入了自动驾驶时代。很多语言都有类似于“虚拟线程”的技术,比如Go、C#、Erlang、Lua等,他们称之为“协程”。这次java没有新增任何关键字,甚至没有新增新的概念,虚拟线程比起goroutine,协程,要好理解得多,看这名字就大概知道它在做啥了。

JDK 19 虚拟线程

传统Java中的线程模型与操作系统是 1:1 对应的,创建和切换线程代价很大,受限于操作系统,只能创建有限的数量。当并发量很大时,无法为每个请求都创建一个线程。使用线程池可以缓解问题,线程池减少了线程创建的消耗,但是也无法提升线程的数量。假如并发量是2000,线程池只有1000个线程,那么同一时刻只能处理1000个请求,还有1000个请求是无法处理的,可以拒绝掉,也可以使其等待,直到有线程让出。

虚拟线程的之前的方案是采用异步风格。已经有很多框架实现了异步风格的并发编程(如Spring5的Reactor),通过线程共享来实现更高的可用性。原理是通过线程共享减少了线程的切换,降低了消耗,同时也避免阻塞,只在程序执行时使用线程,当程序需要等待时则不占用线程。异步风格确实有不少提升,但是也有缺点。大部分异步框架都使用链式写法,将程序分为很多个步骤,每个步骤可能会在不同的线程中执行。你不能再使用熟悉的 ThreadLocal 等并发编程相关的API,否则可能会有错误。编程风格上也有很大的变化,比传统模式的编程风格要复杂很多,学习成本高,可能还要改造项目中的很多已有模块使其适配异步模式。

虚拟线程的实现原理和一些异步框架差不多,也是线程共享,当然也就不需要池化。在使用时你可以认为虚拟线程是无限充裕的,你想创建多少就创建多少,不必担心会有问题。不仅如此,虚拟线程支持 debug,并且能被 Java 相关的监控工具所支持,这很重要。虚拟线程会使你程序的内存占用大幅降低,所有IO密集型应用,比如Web Servers,都可以在同等硬件条件下,大幅提升IO的吞吐量。原来1G内存,同时可以host 1000个访问,使用虚拟线程后,按照官方的说法,能轻松处理100万的并发,具体到业务场景上能否支撑还要看压力测试,但是我们打个折扣,10万应该能够轻松实现,而你不需要为此付出任何的代价,可能连代码都不用改。因为虚拟线程可以使得你保持传统的编程风格,也就是一个请求一个线程的模式,像使用线程一样使用虚拟线程,程序只需要做很少的改动。虚拟线程也没有引入新的语法,可以说学习和迁移成本极低。

值得一提的是虚拟线程底层依然使用了Fork/Join框架。

全局视角看技术-Java多线程演进史的更多相关文章

  1. SpringBoot 全局视角看springboot

    从单体架构到微服务 单体架构 任何一个网站在发布初期几乎都不可能立马就拥有庞大的用户流量和海量数据,都是在不停 的试错过程中一步一步演变其自身架构,满足其自身业务.比如现在能够抗住双十一这么大 流量的 ...

  2. Java技术——Java多线程学习

    )适合多个相同程序代码的线程区处理同一资源的情况.比如下面这个买票的例子. //使用Thread实现 public static class MyThread extends Thread{ priv ...

  3. Java多线程——<一>概述、定义任务

    一.概述 为什么使用线程?从c开始,任何一门高级语言的默认执行顺序是“按照编写的代码的顺序执行”,日常开发过程中写的业务逻辑,但凡不涉及并发的,都是让一个任务顺序执行以确保得到想要的结果.但是,当你的 ...

  4. 转:java多线程CountDownLatch及线程池ThreadPoolExecutor/ExecutorService使用示例

    java多线程CountDownLatch及线程池ThreadPoolExecutor/ExecutorService使用示例 1.CountDownLatch:一个同步工具类,它允许一个或多个线程一 ...

  5. 从ConcurrentHashMap的演进看Java多线程核心技术 Java进阶(六)

    本文分析了HashMap的实现原理,以及resize可能引起死循环和Fast-fail等线程不安全行为.同时结合源码从数据结构,寻址方式,同步方式,计算size等角度分析了JDK 1.7和JDK 1. ...

  6. EMAS,一部淘宝十年移动互联网技术的演进史

    导读 本文根据2018云栖大会深圳峰会·EMAS专场—移动互联的进化论,阿里巴巴高级技术专家泠茗< EMAS全景介绍>的演讲整理而成,文中就EMAS的起源史及EMAS的五大移动研发场景解决 ...

  7. Java多线程技术学习笔记(二)

    目录: 线程间的通信示例 等待唤醒机制 等待唤醒机制的优化 线程间通信经典问题:多生产者多消费者问题 多生产多消费问题的解决 JDK1.5之后的新加锁方式 多生产多消费问题的新解决办法 sleep和w ...

  8. 5月份值得一看的 Java 技术干货!

    5月又即将要离我们远去了,这个月有小长假51劳动节,有54青年节,有513母亲节,更有坑爹的520神马节?!! 废话不说,又到了总结上个月干货的时候了,这个月我们带来了各种Java技术干货,都是不得不 ...

  9. 面试大厂必看!就凭借这份Java多线程和并发面试题,我拿到了字节和美团的offer!

    最近好多粉丝私信我说在最近的面试中老是被问到多线程和高并发的问题,又对这一块不是很了解,很简单就被面试官给问倒了,被问倒的后果当然就是被刷下去了,因为粉丝要求,我最近也是花了两天时间 给大家整理了这一 ...

  10. Java多线程超级详解(只看这篇就够了)

    多线程能够提升程序性能,也属于高薪必能核心技术栈,本篇会全面详解Java多线程.@mikechen 主要包含如下几点: 基本概念 很多人都对其中的一些概念不够明确,如同步.并发等等,让我们先建立一个数 ...

随机推荐

  1. JavaScript Promises, async/await

    new Promise() 的时候,传一个 executor 给 Promise. let promise = new Promise(function(resolve, reject) { // t ...

  2. prometheus-监控docker服务器

    1. prometheus-监控docker服务器 prometheus-监控docker服务器 cAdvisor(Container Advisor):用于收集正在运行的容器资源使用和性能信息. 项 ...

  3. 我的RHCA认证之旅

    云方向的RHCA架构师认证 想更深入研究Linux.对Linux有一定兴趣,我在2022.12.27这一天通过了RHCA认证 课程介绍 以下是我在众多RHCA的专家课程中,选择的五门 cl210 (R ...

  4. HBase详解(01) - Hbase简介

    HBase简介 定义:HBase是一种分布式.可扩展.支持海量数据存储的NoSQL数据库. 数据模型:逻辑上,HBase的数据模型同关系型数据库很类似,数据存储在一张表中,有行有列.但从HBase的底 ...

  5. day04-Vue01

    Vue01 1.Vue是什么? Vue(读音/vju:/,类似于view)是一个前端框架,依据构建用户界面 Vue的核心库只关注视图层,不仅易于上手,还便于与第三方库或者项目整合 支持和其他类库结合使 ...

  6. 最大公约数gcd和最小公倍数lcm

    迭代版本 int gcd(int a, int b) { while (b != 0) { int r = a % b; a = b; b = r; } return a; } int lcm(int ...

  7. 洛谷P1048 典型01背包问题

    写在前面的话 蒟蒻在学习诸多图论算法之前,实际上没学过dp! 强说是学过也是只学了01背包,今天就来温习一下-- DP是啥? 动态规划(Dynamic Programming,DP)是运筹学的一个分支 ...

  8. SOFAJRaft模块启动过程

    本篇文章旨在分析SOFAJRaft中jraft-example模块的启动过程,由于SOFAJRaft在持续开源的过程中,所以无法保证示例代码永远是最新的,要是源代码有较大的变动,亦或出现纰漏.错误的地 ...

  9. 发布并部署NCF站点的那些事

    简介 开工第一天,祝大家2023年钱兔无量,技术兔飞猛进 为更加方便大家一站式打通所有使用NCF的环节,在新年开工的第一天给大家带来如何发布最新版本的站点 无论你的网站在开发环境做的多么的炫酷,实用, ...

  10. thinkphp无法访问man.php/index/login

    配置半天.user.ini,权限问题解决了,但是还是访问不了后台登陆界面(链接:域名/man.php/index/login),后来发现是伪静态thinkphp没设置好,设置好后重启nginx就好啦