Bob 的生存概率问题

作者:Grey

原文地址:

博客园:Bob 的生存概率问题

CSDN:Bob 的生存概率问题

题目描述

给定五个参数 n , m , i , j , k,表示在一个 n*m 的区域,Bob 处在 (i,j) 点,每次 Bob 等概率的向上、 下、左、右四个方向移动一步,Bob 必须走 k 步。如果走完之后,Bob 还停留在这个区域上, 就算 Bob 存活,否则就算 Bob 死亡。请求解 Bob 的生存概率,返回字符串表示分数的方式。

题目链接:牛客-Bob的生存概率

暴力解法

由于 Bob 可以向四个方向任意一个方向走 k 步,所以,Bob 可以选择走的路线总数是:4^k,即:4 的 k 次方。

接下来就是要求在 4 ^ k 总数中,哪些是存活下来的路线,定义如下递归函数

long process(int i, int j, int k, int n, int m)

递归含义表示:目前在 (i,j) 位置,还有 k 步要走,走完了如果还在棋盘中就获得1个生存点,返回总的生存点数。

接下来是 base case,如果越界了,直接返回 0,

        if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}

表示没有生存机会,

如果没有越界,但是此时正好 k == 0,说明已经有一种存活路线了,返回 1,表示一种有效路线。

        if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}
// 没有越界,说明还在棋盘中,没有步数了,直接返回一种有效路线。
if (k == 0) {
return 1;
}

接下来是普遍情况, Bob 在棋盘中,可以往四面八方走,即

        long up = process(i - 1, j, k - 1, n, m);
long down = process(i + 1, j, k - 1, n, m);
long left = process(i, j - 1, k - 1, n, m);
long right = process(i, j + 1, k - 1, n, m);

上述表示四面八方走返回的有效路线,四个方向的有效路线之和,就是答案,即

return up + down + left + right;

递归函数的完整代码如下

    public static long process(int i, int j, int k, int n, int m) {
if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}
// 还在棋盘中!
if (k == 0) {
return 1;
}
// 还在棋盘中!还有步数要走
long up = process(i - 1, j, k - 1, n, m);
long down = process(i + 1, j, k - 1, n, m);
long left = process(i, j - 1, k - 1, n, m);
long right = process(i, j + 1, k - 1, n, m);
return up + down + left + right;
}

由于最后的结果要返回最简的分数形式,所以假设有效路线是 X 种,所有可能的走法是 Y 种,那么返回的字符串是如下形式

return (X/gcd(X,Y)) + "/" + (Y/gcd(X,Y))

其中 gcd(X,Y) 就是利用辗转相除法得到 X,Y 的最大公约数

    public static long gcd(long m, long n) {
return n == 0 ? m : gcd(n, m % n);
}

暴力解法的完整代码如下

import java.util.Scanner;

public class Main {

    public static String livePossibility1(int i, int j, int k, int n, int m) {
return buildExp(process(i, j, k, n, m), (long) Math.pow(4, k));
} // 目前在i,j位置,还有k步要走,走完了如果还在棋盘中就获得1个生存点,返回总的生存点数
public static long process(int i, int j, int k, int n, int m) {
if (i < 0 || i == n || j < 0 || j == m) {
return 0;
}
// 还在棋盘中!
if (k == 0) {
return 1;
}
// 还在棋盘中!还有步数要走
long up = process(i - 1, j, k - 1, n, m);
long down = process(i + 1, j, k - 1, n, m);
long left = process(i, j - 1, k - 1, n, m);
long right = process(i, j + 1, k - 1, n, m);
return up + down + left + right;
} public static String buildExp(long m, long n) {
return m / gcd(m, n) + "/" + n / gcd(m, n);
} public static long gcd(long m, long n) {
return n == 0 ? m : gcd(n, m % n);
} public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int i = sc.nextInt();
int j = sc.nextInt();
int k = sc.nextInt();
System.out.println(livePossibility1(i, j, k, n, m));
sc.close();
}
}

超时

动态规划解 (可 AC)

根据上述暴力递归过程可知,递归函数有三个可变参数:i,j,k;所以,定义一个三维数组 dp,就可以把所有递归过程的中间值存下,根据 i,j,k 的可变范围,定义如下三维数组:

long[][][] dp = new long[n][m][k + 1];

根据暴力递归过程的 base case,可以初始化 dp 的某些位置的值

        long[][][] dp = new long[n][m][k + 1];
for (int row = 0; row < n; row++) {
for (int col = 0; col < m; col++) {
dp[row][col][0] = 1;
}
}

接下来是普遍情况,通过暴力递归过程可知,dp[i][j][k]依赖以下四个位置的值

dp[i-1][j][k-1]

dp[i+1][j][k-1]

dp[i][j-1][k-1]

dp[i][j+1][k-1]

即:三维数组的每一层只依赖上一层的数据结果,而第一层的值已经初始化好了,所以可以根据第一层求第二层,依次求到最后一层,这个动态规划的思路类似:象棋中的马跳步问题,不赘述。

动态规划的解完整代码如下

import java.util.Scanner;

public class Main {

    public static String livePossibility2(int i, int j, int k, int n, int m) {
long[][][] dp = new long[n][m][k + 1];
for (int row = 0; row < n; row++) {
for (int col = 0; col < m; col++) {
dp[row][col][0] = 1;
}
}
for (int rest = 1; rest <= k; rest++) {
for (int r = 0; r < n; r++) {
for (int c = 0; c < m; c++) {
dp[r][c][rest] = pick(dp, n, m, r - 1, c, rest - 1);
dp[r][c][rest] += pick(dp, n, m, r + 1, c, rest - 1);
dp[r][c][rest] += pick(dp, n, m, r, c - 1, rest - 1);
dp[r][c][rest] += pick(dp, n, m, r, c + 1, rest - 1);
}
}
}
return buildExp(dp[i][j][k], (long) Math.pow(4, k));
} public static String buildExp(long m, long n) {
return m / gcd(m, n) + "/" + n / gcd(m, n);
} public static long gcd(long m, long n) {
return n == 0 ? m : gcd(n, m % n);
} public static long pick(long[][][] dp, int n, int m, int r, int c, int rest) {
if (r < 0 || r == n || c < 0 || c == m) {
return 0;
}
return dp[r][c][rest];
} public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int i = sc.nextInt();
int j = sc.nextInt();
int k = sc.nextInt();
System.out.println(livePossibility2(i, j, k, n, m));
sc.close();
}
}

更多

算法和数据结构笔记

Bob 的生存概率问题的更多相关文章

  1. 生存模型(Survival Model)介绍

    https://www.cnblogs.com/BinbinChen/p/3416972.html 生存分析,维基上的解释是: 生存分析(Survival analysis)是指根据试验或调查得到的数 ...

  2. R语言学习 - 非参数法生存分析--转载

    生存分析指根据试验或调查得到的数据对生物或人的生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度大小的方法,也称生存率分析或存活率分析.常用于肿瘤等疾病的标志物筛选.疗效及预后的考 ...

  3. 生存分析(survival analysis)

    一.生存分析(survival analysis)的定义 生存分析:对一个或多个非负随机变量进行统计推断,研究生存现象和响应时间数据及其统计规律的一门学科. 生存分析:既考虑结果又考虑生存时间的一种统 ...

  4. ACM里的期望和概率问题 从入门到精通

    起因:在2020年一场HDU多校赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有X,Y ...

  5. R数据分析:生存分析与有竞争事件的生存分析的做法和解释

    今天被粉丝发的文章给难住了,又偷偷去学习了一下竞争风险模型,想起之前写的关于竞争风险模型的做法,真的都是皮毛哟,大家见笑了.想着就顺便把所有的生存分析的知识和R语言的做法和论文报告方法都给大家梳理一遍 ...

  6. 转:遗传算法解决TSP问题

    1.编码 这篇文章中遗传算法对TSP问题的解空间编码是十进制编码.如果有十个城市,编码可以如下: 0 1 2 3 4 5 6 7 8 9 这条编码代表着一条路径,先经过0,再经过1,依次下去. 2.选 ...

  7. frequentism-and-bayesianism-chs-ii

    frequentism-and-bayesianism-chs-ii 频率主义 vs 贝叶斯主义 II:当结果不同时   这个notebook出自Pythonic Perambulations的博文  ...

  8. tyvj1519博彩游戏

    博彩游戏 From admin 背景 Background Bob最近迷上了一个博彩游戏…… 描述 Description 这个游戏的规则是这样的:每花一块钱可以得到一个随机数R,花上N块钱就可以得到 ...

  9. tyvj P1519 博彩游戏(AC自动机+DP滚动数组)

    P1519 博彩游戏 背景 Bob最近迷上了一个博彩游戏…… 描述 这个游戏的规则是这样的:每花一块钱可以得到一个随机数R,花上N块钱就可以得到一个随机序列:有M个序列,如果某个序列是产生的随机序列的 ...

随机推荐

  1. Hadoop集群搭建的详细过程

    Hadoop集群搭建 一.准备 三台虚拟机:master01,node1,node2 时间同步 1.date命令查看三台虚拟机时间是否一致 2.不一致时间同步:ntpdate ntp.aliyun.c ...

  2. 【Django】DRF开发中的一些技巧记录

    问题记录 问题1:信号没有按预期触发 描述 编写了信号函数后,并没有如预期一般在必要时候触发,函数如下: @receiver(signals.post_save, sender=Prometheus) ...

  3. SSH免密登录的配置

    ssh登录 登录ssh一般情况有两种方法 密码登录 秘钥登录(免密) 大部分情况我们选择都是输入密码登录,平常使用暂时没有遇到什么问题.最近我编写了一些使用scp来传输文件的脚本,每一次scp都需要输 ...

  4. Tomcat入门学习笔记

    Tomcat服务器 Tomcat使用 Tomcat下载 官网地址:Apache Tomcat - Apache Tomcat 8 Software Downloads 下载Windows 64位版To ...

  5. Docker网络讲解 及实验redis集群部署

    理解docker0 准备工作:清空所有的容器,清空所有的镜像 docker rm -f $(docker ps -a -q) # 删除所有容器 docker rmi -f $(docker image ...

  6. KingbaseES V8R6集群维护案例之--单实例数据迁移到集群案例

    案例说明: 生产环境是单实例,测试环境是集群,现需要将生产环境的数据迁移到集群中运行,本文档详细介绍了从单实例环境恢复数据到集群环境的操作步骤,可以作为生产环境迁移数据的参考. 适用版本: Kingb ...

  7. .Net下的高效分页

    本文技术方案支持.Net/.Net Core/.Net Framework 数据分页,几乎是任何应用系统的必备功能.但当数据量较大时,分页操作的效率就会变得很低.大数据量分页时,一个操作耗时5秒.10 ...

  8. 微信小程序-全局配置、组件、页面跳转、用户信息等

    全局配置 三个页面 app.json pages字段 "pages":[ "pages/index/index", # 首页 "pages/home/ ...

  9. 腾讯云主机安全【等保三级】CentOS7安全基线检查策略

    转载自:https://secvery.com/8898.html 注意:注意,注意:处理前请先做备份,处理前请先做备份,处理前请先做备份 1.确保配置了密码尝试失败的锁定 编辑/etc/pam.d/ ...

  10. Kibana:在Kibana中对数据进行深入分析