迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。

它的主要特点是以起始点为中心向外层层扩展(广度优先遍历思想),直到扩展到终点为止

贪心算法(Greedy Algorithm)

贪心算法,又名贪婪法,是寻找最优解问题的常用方法,这种方法模式一般将求解过程分成若干个步骤,但每个步骤都应用贪心原则,选取当前状态下最好/最优的选择(局部最有利的选择),并以此希望最后堆叠出的结果也是最好/最优的解。

Dijkstra推导过程(摘自:https://zhuanlan.zhihu.com/p/346558578)

  • 通过Dijkstra计算图G中的最短路径时,需要指定一个起点D(即从顶点D开始计算)。
  • 此外,引进两个数组S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点D的距离)。
  • 初始时,数组S中只有起点D;数组U中是除起点D之外的顶点,并且数组U中记录各顶点到起点D的距离。如果顶点与起点D不相邻,距离为无穷大。
  • 然后,从数组U中找出路径最短的顶点K,并将其加入到数组S中;同时,从数组U中移除顶点K。接着,更新数组U中的各顶点到起点D的距离。
  • 重复第4步操作,直到遍历完所有顶点。

图解(摘自:https://zhuanlan.zhihu.com/p/346558578)

当我们理解了算法原理后,我们需要明白Dijkstra不能够处理的场景

  • 不能处理负权重边(往往找错最短路径,在Dijkstra看来,cost是递增的)
  • A-A的绕圈路径查找(需要特殊处理)

代码实战(已经在生产使用)

  • 节点对象定义:
public class Edge
{
public int StartNodeID;
public int EndNodeID;
public double Weight;
}
public class Node
{
public int Id { get; set; }
public bool Enable { get; set; }
}
public class NodeItem
{
public bool Used { get; set; }
public List<int> Nodes { get; } = new List<int>();
public int NodeId { get; set; }
public int Index { get; set; }
public double Weight { get; set; }
}
  • 初始化图,点,路径集合
public void Initialize(IEnumerable<Edge> edges, IEnumerable<Node> nodes)
{
_edges = edges.ToList();
_nodes = nodes.ToList();
_nodeItems = new List<NodeItem>();
_graph = new double[_nodes.Count(), _nodes.Count()];
foreach (var row in Enumerable.Range(0, _nodes.Count()))
{
var rowNode = _nodes[row];
foreach (var colnum in Enumerable.Range(0, _nodes.Count()))
{
if (row == colnum)
{
_graph[row, colnum] = 0;
continue;
}
var edge = _edges.FirstOrDefault(x =>
x.StartNodeID == rowNode.Id && x.EndNodeID == _nodes[colnum].Id);
_graph[row, colnum] = edge == null ? double.MaxValue : edge.Weight;
} _nodeItems.Add(new NodeItem()
{
NodeId = _nodes[row].Id,
Index = row,
Weight = double.MaxValue
});
}
}
  • 路由主体方法
public Route GetRoute(int startPointID, int endPointID)
{
if (IsRouting)
throw new InvalidOperationException($"can't route.router busy"); IsRouting = true;
Node sNode = null;
Node dNode = null; try
{
if ((sNode = _nodes.FirstOrDefault(x => x.Id == startPointID)) == null
|| (dNode = _nodes.FirstOrDefault(x => x.Id == endPointID)) == null)
throw new ArgumentNullException("can't found target points."); _nodeItems.FirstOrDefault(x => x.NodeId == startPointID).Used = true;
_nodeItems.ForEach(x =>
{
x.Weight = GetRowArray(_graph, _nodes.IndexOf(sNode))[x.Index];
x.Nodes.Add(startPointID);
}); while (_nodeItems.Any(x => !x.Used))
{
var item = GetUnUsedAndMinNodeItem();
if (item == null)
break; item.Used = true;
var tempRow = GetRowArray(_graph, item.Index);
foreach (var nodeItem in _nodeItems)
{
if (nodeItem.Weight > tempRow[nodeItem.Index] + item.Weight)
{
nodeItem.Weight = tempRow[nodeItem.Index] + item.Weight;
nodeItem.Nodes.Clear();
nodeItem.Nodes.AddRange(item.Nodes);
nodeItem.Nodes.Add(item.NodeId);
}
}
} var desNodeitem = _nodeItems.FirstOrDefault(x => x.NodeId == endPointID);
if (desNodeitem.Used && desNodeitem.Weight < double.MaxValue)
{
var edges = new List<Edge>();
foreach (var index in Enumerable.Range(0, desNodeitem.Nodes.Count - 1))
{
edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes[index] && x.EndNodeID == desNodeitem.Nodes[index + 1]));
} edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes.Last() && x.EndNodeID == endPointID));
return new Route()
{
Edges = edges
};
} return null;
}
catch (Exception ex)
{
_logger.LogError(ex.ToString());
_logger.LogInformation($"startPoint:{startPointID}-endpoint:{endPointID} route faild.");
throw;
}
finally
{
_nodeItems.ForEach(x =>
{
x.Used = false;
x.Nodes.Clear();
}); IsRouting = false;
}
} private NodeItem GetUnUsedAndMinNodeItem()
{
return _nodeItems.Where(x => !x.Used && x.Weight != double.MaxValue).OrderBy(x => x.Weight).FirstOrDefault();
} private double[] GetRowArray(double[,] source, int row)
{
double[] result = new double[source.GetLength(1)];
foreach (var index in Enumerable.Range(0, result.Length))
{
result[index] = source[row, index];
} return result;
}

完整代码

public class DijkstraRouter
{
private double[,] _graph;
private List<Edge> _edges;//所有的边
private List<Node> _nodes;//所有的节点
private List<NodeItem> _nodeItems;
public bool IsRouting { get; set; } private readonly ILogger<DijkstraRouter> _logger; public DijkstraRouter(ILogger<DijkstraRouter> logger)
{
_logger = logger;
} public Route GetRoute(int startPointID, int endPointID)
{
if (IsRouting)
throw new InvalidOperationException($"can't route.router busy"); IsRouting = true;
Node sNode = null;
Node dNode = null; try
{
if ((sNode = _nodes.FirstOrDefault(x => x.Id == startPointID)) == null
|| (dNode = _nodes.FirstOrDefault(x => x.Id == endPointID)) == null)
throw new ArgumentNullException("can't found target points."); _nodeItems.FirstOrDefault(x => x.NodeId == startPointID).Used = true;
_nodeItems.ForEach(x =>
{
x.Weight = GetRowArray(_graph, _nodes.IndexOf(sNode))[x.Index];
x.Nodes.Add(startPointID);
}); while (_nodeItems.Any(x => !x.Used))
{
var item = GetUnUsedAndMinNodeItem();
if (item == null)
break; item.Used = true;
var tempRow = GetRowArray(_graph, item.Index);
foreach (var nodeItem in _nodeItems)
{
if (nodeItem.Weight > tempRow[nodeItem.Index] + item.Weight)
{
nodeItem.Weight = tempRow[nodeItem.Index] + item.Weight;
nodeItem.Nodes.Clear();
nodeItem.Nodes.AddRange(item.Nodes);
nodeItem.Nodes.Add(item.NodeId);
}
}
} var desNodeitem = _nodeItems.FirstOrDefault(x => x.NodeId == endPointID);
if (desNodeitem.Used && desNodeitem.Weight < double.MaxValue)
{
var edges = new List<Edge>();
foreach (var index in Enumerable.Range(0, desNodeitem.Nodes.Count - 1))
{
edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes[index] && x.EndNodeID == desNodeitem.Nodes[index + 1]));
} edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes.Last() && x.EndNodeID == endPointID));
return new Route()
{
Edges = edges
};
} return null;
}
catch (Exception ex)
{
_logger.LogError(ex.ToString());
_logger.LogInformation($"startPoint:{startPointID}-endpoint:{endPointID} route faild.");
throw;
}
finally
{
_nodeItems.ForEach(x =>
{
x.Used = false;
x.Nodes.Clear();
}); IsRouting = false;
}
} private NodeItem GetUnUsedAndMinNodeItem()
{
return _nodeItems.Where(x => !x.Used && x.Weight != double.MaxValue).OrderBy(x => x.Weight).FirstOrDefault();
} private double[] GetRowArray(double[,] source, int row)
{
double[] result = new double[source.GetLength(1)];
foreach (var index in Enumerable.Range(0, result.Length))
{
result[index] = source[row, index];
} return result;
} public void Initialize(IEnumerable<Edge> edges, IEnumerable<Node> nodes)
{
_edges = edges.ToList();
_nodes = nodes.ToList();
_nodeItems = new List<NodeItem>();
_graph = new double[_nodes.Count(), _nodes.Count()];
foreach (var row in Enumerable.Range(0, _nodes.Count()))
{
var rowNode = _nodes[row];
foreach (var colnum in Enumerable.Range(0, _nodes.Count()))
{
if (row == colnum)
{
_graph[row, colnum] = 0;
continue;
}
var edge = _edges.FirstOrDefault(x =>
x.StartNodeID == rowNode.Id && x.EndNodeID == _nodes[colnum].Id);
_graph[row, colnum] = edge == null ? double.MaxValue : edge.Weight;
} _nodeItems.Add(new NodeItem()
{
NodeId = _nodes[row].Id,
Index = row,
Weight = double.MaxValue
});
}
} public class NodeItem
{
public bool Used { get; set; }
public List<int> Nodes { get; } = new List<int>();
public int NodeId { get; set; }
public int Index { get; set; }
public double Weight { get; set; }
}
}

最短路径算法-迪杰斯特拉(Dijkstra)算法在c#中的实现和生产应用的更多相关文章

  1. JS实现最短路径之迪杰斯特拉(Dijkstra)算法

    最短路径: 对于网图来说,最短路径是指两个顶点之间经过的边上权值和最少的路径,我们称第一个顶点是源点,最后一个顶点是终点 迪杰斯特拉 ( Dijkstra) 算法是并不是一下子就求出 了 Vo 到V8 ...

  2. [C++]单源最短路径:迪杰斯特拉(Dijkstra)算法(贪心算法)

    1 Dijkstra算法 1.1 算法基本信息 解决问题/提出背景 单源最短路径(在带权有向图中,求从某顶点到其余各顶点的最短路径) 算法思想 贪心算法 按路径长度递增的次序,依次产生最短路径的算法 ...

  3. 迪杰斯特拉Dijkstra算法介绍

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...

  4. 最短路径-迪杰斯特拉(dijkstra)算法及优化详解

    简介: dijkstra算法解决图论中源点到任意一点的最短路径. 算法思想: 算法特点: dijkstra算法解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算 ...

  5. 最短路径 - 迪杰斯特拉(Dijkstra)算法

    对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd ...

  6. 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析

    什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...

  7. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  8. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

  9. C# 迪杰斯特拉(Dijkstra)算法

    Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 其基本思想是,设置顶点集合S并不断地作 ...

随机推荐

  1. css设置元素背景透明度的2种方式

    更新记录 本文迁移自Panda666原博客,原发布时间:2021年7月9日. 设置元素的背景的透明度可以使用2种方式:方式1:opacity属性.方式2:使用rgba值.两种方式有一点差异,opaci ...

  2. 五种方式实现 Java 单例模式

    前言 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式. 这种模式涉及到一个单一的类,该类负责创建自 ...

  3. labelimg使用指南

    labelimg使用指南 From RSMX - https://www.cnblogs.com/rsmx/ 目录 labelimg使用指南 1. 确保已经安装了 Python 环境 2. 使用pip ...

  4. 记一次 .NET 差旅管理后台 CPU 爆高分析

    一:背景 1. 讲故事 前段时间有位朋友在微信上找到我,说他的 web 系统 cpu 运行一段时候后就爆高了,让我帮忙看一下是怎么回事,那就看吧,声明一下,我看 dump 是免费的,主要是锤炼自己技术 ...

  5. 要想不踩SaaS那些坑,得先了解“SaaS架构”

    摘要:围绕当下许多企业青睐的SaaS应用开发,华为云开发者技术服务工程师程泽在DTT首期带来主题为 <SaaS云原生应用典型架构> 的DTT首期直播分享. 本文分享自华为云社区<DT ...

  6. APISpace 周公解梦API接口 免费好用

    <周公解梦>,是根据人的梦来卜吉凶的一本解梦书籍,它对人的七类梦境进行解述.   周公解梦API,周公解梦大全,周公解梦查询,免费周公解梦.   APISpace 有很多免费通用的API接 ...

  7. 什么是好的 API 设计?【eolink翻译】

    对于试图完善其 API 策略的团队来说,良好的 API 设计是一个经常出现的话题. API 设计的重要性相信不需要赘述,精心设计的 API 的好处包括:更好开发人员体验.更快的文档编制以及更高的 AP ...

  8. 利用Kaptcha.jar生成图片验证码(以下源码可以直接复制并自定义修改)

    说明:Kaptcha是一个很实用的验证码生成工具,它可以生成各种样式的验证码,因为它是可以配置的 目录: 一 实现步骤 二 实例 A 编写jsp页面 B 配置web.xml C 验证输入正确与否. 一 ...

  9. 部署CDH集群环境准备

    一.系统centOS7以上,至少三台主机 添加ip 主机名映射关系:(每台主机都要做) vim /etc/hosts 127.0.0.1 localhost localhost.localdomain ...

  10. fill-available,min-content,max-content,fit-content的作用机制

    fill-available:宽度由外部元素决定(div)min-content:宽度由内部元素宽度缩小到最小的最大内部元素宽度决定max-content:宽度由内部元素宽度扩大到最大后的最大内部元素 ...