目录

1 背景

1.1 什么是EigenFaces?

1.2 坐标的变化

2 面部重建

2.1 计算新面部图像的PCA权重

2.2 使用EigenFaces进行面部重建

3 参考


在这篇文章中,我们将学习如何使用EigenFaces实现人脸重建。我们需要了解主成分分析(PCA)和EigenFaces。

1 背景

1.1 什么是 EigenFaces

在我们之前的文章中,我们解释了Eigenfaces是可以添加到平均(平均)面部以创建新的面部图像的图像。我们可以用数学方式写这个,

其中

F是一张新生成的脸部图像;

Fm是平均人脸图像;

Fi是一个EigenFace(特征脸);

是我们可以选择创建新图的标量系数权重,可正可负。

在我们之前的文章中,我们解释了如何计算EigenFaces,如何解释它们以及如何通过改变权重来创建新面孔。

现在假设,我们将获得一张新的面部照片,如下图所示。我们如何使用EigenFaces重建照片F?换句话说,我们如何找到在上面的等式中使用的权重将产生面部图像作为输出?这正是本文所涉及的问题,但在我们尝试这样做之前,我们需要一些线性代数背景。下图左侧是原始图像。左边的第二个图像是使用250个EigenFaces构建的,第三个图像使用1000个Eigenfaces,最右边的图像使用4000个Eigenfaces。

1.2 坐标的变化

在一个三维坐标系中,坐标轴x,y,z由下图中黑色线条表示。您可以想象相对于原始的x,y,z帧,以(xo, yo,zo)点进行旋转和平移,获得另一组垂直轴。在图2中,我们以蓝色显示该旋转和平移坐标系的轴X'Y'Z’。在X,Y,Z坐标系的点(x,y,z)用红点表示。我们如何找到X'Y'Z'坐标系中点(x',y',z')的坐标?这可以分两步完成。

转换:首先,我们可以以原坐标系点(x,y,z)通过减去新坐标系的原点(xo,yo,zo)来实现平移,所以我们有了一个新的向量(x-xo,y-yo,z-zo)。

投影:接下来,我们需要将(x-xo,y-yo,z-zo)投影到x',y',z'上,它只是(x-xo,y-yo,z-zo)的点积,方向分别为x',y'和z'。下图中的绿线显示了红点到Z'轴上的投影。让我们看看这种技术如何应用于人脸重建。

2 面部重建

2.1 计算新面部图像的 PCA 权重

正如我们在上一篇文章中所看到的,为了计算面部数据的主要成分,我们将面部图像转换为长矢量。例如,如果我们有一组尺寸为100x100x3的对齐面部图像,则每个图像可以被认为是长度为100x100x3=30000的矢量。就像三个数字的元组(x,y,z)代表3D空间中的一个点一样,我们可以说长度为30,000的向量是30,000维空间中的一个点。这个高维空间的轴线就像维坐标轴xyz彼此垂直一样。主成分(特征向量)在这个高维空间中形成一个新的坐标系,新的原点是主成分分析向量平均值。

给定一个新图像,我们找到权重流程如下:

1)矢量化图像:我们首先从图像数据创建一个长矢量。这很简单,重新排列数据只需要一行或两行代码。

2)减去平均向量.

3)主成分映射:这可以通过计算每个主分量与平均向量的差的点积来实现。所给出的点积结果就是权重

4)组合向量:一旦计算了权重,我们可以简单地将每个权重乘以主成分并将它们加在一起。最后,我们需要将平均人脸向量添加到此总和中。

5)将矢量重置为人脸图像:作为上一步的结果,我们获得了一个30k长的矢量,并且可以将其重新整形为100 x 100 x 3图像。这是最终的图像。

在我们的示例中,100 x 100 x3图像具有30k尺寸。在对2000个图像进行PCA之后,我们可以获得2000维的空间,并且能够以合理的精度水平重建新面部。过去采用30k数字表示的内容现在仅使用2k个数字表示。换句话说,我们只是使用PCA来减少面部空间的尺寸。

2.2 使用 EigenFaces 进行面部重建

假设您已下载代码,我们将查看代码的重要部分。首先,在文件createPCAModel.cpp和createPCAModel.py中共享用于计算平均人脸和EigenFaces的代码。我们在上一篇文章中解释了该方法,因此我们将跳过该解释。相反,我们将讨论reconstructFace.cpp和reconstructFace.py。

代码如下:

C++:

#include "pch.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <opencv2/opencv.hpp>
#include <stdlib.h>
#include <time.h> using namespace cv;
using namespace std; // Matrices for average (mean) and eigenvectors
Mat averageFace;
Mat output;
vector<Mat> eigenFaces;
Mat imVector, meanVector, eigenVectors, im, display; // Display result
// Left = Original Image
// Right = Reconstructed Face
void displayResult( Mat &left, Mat &right)
{
hconcat(left,right, display);
resize(display, display, Size(), 4, 4);
imshow("Result", display);
} // Recontruct face using mean face and EigenFaces
void reconstructFace(int sliderVal, void*)
{
// Start with the mean / average face
Mat output = averageFace.clone();
for (int i = 0; i < sliderVal; i++)
{
// The weight is the dot product of the mean subtracted
// image vector with the EigenVector
double weight = imVector.dot(eigenVectors.row(i)); // Add weighted EigenFace to the output
output = output + eigenFaces[i] * weight;
} displayResult(im, output);
} int main(int argc, char **argv)
{ // Read model file
string modelFile("pcaParams.yml");
cout << "Reading model file " << modelFile << " ... " ; FileStorage file(modelFile, FileStorage::READ); // Extract mean vector
meanVector = file["mean"].mat(); // Extract Eigen Vectors
eigenVectors = file["eigenVectors"].mat(); // Extract size of the images used in training.
Mat szMat = file["size"].mat();
Size sz = Size(szMat.at<double>(1,0),szMat.at<double>(0,0)); // Extract maximum number of EigenVectors.
// This is the max(numImagesUsedInTraining, w * h * 3)
// where w = width, h = height of the training images.
int numEigenFaces = eigenVectors.size().height;
cout << "DONE" << endl; cout << "Extracting mean face and eigen faces ... ";
// Extract mean vector and reshape it to obtain average face
averageFace = meanVector.reshape(3,sz.height); // Reshape Eigenvectors to obtain EigenFaces
for(int i = 0; i < numEigenFaces; i++)
{
Mat row = eigenVectors.row(i);
Mat eigenFace = row.reshape(3,sz.height);
eigenFaces.push_back(eigenFace);
}
cout << "DONE" << endl; // Read new test image. This image was not used in traning.
string imageFilename("test/satya1.jpg");
cout << "Read image " << imageFilename << " and vectorize ... ";
im = imread(imageFilename);
im.convertTo(im, CV_32FC3, 1/255.0); // Reshape image to one long vector and subtract the mean vector
imVector = im.clone();
imVector = imVector.reshape(1, 1) - meanVector;
cout << "DONE" << endl; // Show mean face first
output = averageFace.clone(); cout << "Usage:" << endl
<< "\tChange the slider to change the number of EigenFaces" << endl
<< "\tHit ESC to terminate program." << endl; namedWindow("Result", CV_WINDOW_AUTOSIZE);
int sliderValue; // Changing the slider value changes the number of EigenVectors
// used in reconstructFace.
createTrackbar( "No. of EigenFaces", "Result", &sliderValue, numEigenFaces, reconstructFace); // Display original image and the reconstructed image size by side
displayResult(im, output); waitKey(0);
destroyAllWindows();
return 0;
}

Python:

# Import necessary packages
import os
import sys
import cv2
import numpy as np '''
Display result
Left = Original Image
Right = Reconstructed Face
'''
def displayResult(left, right) :
output = np.hstack((left,right))
output = cv2.resize(output, (0,0), fx=4, fy=4)
cv2.imshow("Result", output) # Recontruct face using mean face and EigenFaces
def reconstructFace(*args):
# Start with the mean / average face
output = averageFace for i in range(0,args[0]):
'''
The weight is the dot product of the mean subtracted
image vector with the EigenVector
'''
weight = np.dot(imVector, eigenVectors[i])
output = output + eigenFaces[i] * weight displayResult(im, output) if __name__ == '__main__': # Read model file
modelFile = "pcaParams.yml"
print("Reading model file " + modelFile, end=" ... ", flush=True)
file = cv2.FileStorage(modelFile, cv2.FILE_STORAGE_READ) # Extract mean vector
mean = file.getNode("mean").mat() # Extract Eigen Vectors
eigenVectors = file.getNode("eigenVectors").mat() # Extract size of the images used in training.
sz = file.getNode("size").mat()
sz = (int(sz[0,0]), int(sz[1,0]), int(sz[2,0])) '''
Extract maximum number of EigenVectors.
This is the max(numImagesUsedInTraining, w * h * 3)
where w = width, h = height of the training images.
''' numEigenFaces = eigenVectors.shape[0]
print("DONE") # Extract mean vector and reshape it to obtain average face
averageFace = mean.reshape(sz) # Reshape Eigenvectors to obtain EigenFaces
eigenFaces = []
for eigenVector in eigenVectors:
eigenFace = eigenVector.reshape(sz)
eigenFaces.append(eigenFace) # Read new test image. This image was not used in traning.
imageFilename = "test/satya2.jpg"
print("Read image " + imageFilename + " and vectorize ", end=" ... ");
im = cv2.imread(imageFilename)
im = np.float32(im)/255.0 # Reshape image to one long vector and subtract the mean vector
imVector = im.flatten() - mean;
print("Done"); # Show mean face first
output = averageFace # Create window for displaying result
cv2.namedWindow("Result", cv2.WINDOW_AUTOSIZE) # Changing the slider value changes the number of EigenVectors
# used in reconstructFace.
cv2.createTrackbar( "No. of EigenFaces", "Result", 0, numEigenFaces, reconstructFace) # Display original image and the reconstructed image size by side
displayResult(im, output) cv2.waitKey(0)
cv2.destroyAllWindows()

您可以创建模型pcaParams.yml使用createPCAModel.cpp和createPCAModel.py。该代码使用CelebA数据集的前1000个图像,并将它们首先缩放到一半大小。所以这个PCA模型是在大小(89x109)的图像上训练的。除了1000张图像之外,代码还使用了原始图像的垂直翻转版本,因此我们使用2000张图像进行训练。。但是createPCAModel文件里面没有reisze函数,要自己缩放为89X109分辨率。生成了pcaParams.yml文件,再通过reconstructFace获取人脸。

本文所有代码包括createPCAModel文件见:

https://github.com/luohenyueji/OpenCV-Practical-Exercise

但是图像没有列出,从CelebA数据集下载

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

3 参考

https://www.learnopencv.com/face-reconstruction-using-eigenfaces-cpp-python/

[OpenCV实战]22 使用EigenFaces进行人脸重建的更多相关文章

  1. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  2. [OpenCV实战]2 人脸识别算法对比

    在本教程中,我们将讨论各种人脸检测方法,并对各种方法进行比较.下面是主要的人脸检测方法: 1 OpenCV中的Haar Cascade人脸分类器: 2 OpenCV中的深度学习人脸分类器: 3 Dli ...

  3. 机器学习实战:用nodejs实现人脸识别

    机器学习实战:用nodejs实现人脸识别   在本文中,我将向你展示如何使用face-recognition.js执行可靠的人脸检测和识别 . 我曾经试图找一个能够精确识别人脸的Node.js库,但是 ...

  4. opencv基于PCA降维算法的人脸识别

    opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...

  5. [OpenCV实战]49 对极几何与立体视觉初探

    本文主要介绍对极几何(Epipolar Geometry)与立体视觉(Stereo Vision)的相关知识.对极几何简单点来说,其目的就是描述是两幅视图之间的内部对应关系,用来对立体视觉进行建模,实 ...

  6. [实战]MVC5+EF6+MySql企业网盘实战(22)——图片列表

    写在前面 实现逻辑是:单击图片节点,加载所有的当前用户之前上传的图片,分页,按时间倒序加载. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MyS ...

  7. [OpenCV实战]50 用OpenCV制作低成本立体相机

    本文主要讲述利用OpenCV制作低成本立体相机以及如何使用OpenCV创建3D视频,准确来说是模仿双目立体相机,我们通常说立体相机一般是指双目立体相机,就是带两个摄像头的那种(目就是指眼睛,双目就是两 ...

  8. [OpenCV实战]48 基于OpenCV实现图像质量评价

    本文主要介绍基于OpenCV contrib中的quality模块实现图像质量评价.图像质量评估Image Quality Analysis简称IQA,主要通过数学度量方法来评价图像质量的好坏. 本文 ...

  9. [OpenCV实战]1 基于深度学习识别人脸性别和年龄

    目录 1基于CNN的性别分类建模原理 1.1 人脸识别 1.2 性别预测 1.3 年龄预测 1.4 结果 2 代码 参考 本教程中,我们将讨论应用于面部的深层学习的有趣应用.我们将估计年龄,并从单个图 ...

随机推荐

  1. ASCII(American Standard Code for Information Interchange,美国标准信息交换代码)

    ASCII(American Standard Code for Information Interchange,美国标准信息交换代码) ASCII简介 ASCII(American Standard ...

  2. Hyperf 接入阿里云ACM应用配置管理中心

    参考: 阿里云文档:https://help.aliyun.com/document_detail/85466.html?spm=a2c4g.11186623.6.550.43cb42d4Af4Tu0 ...

  3. 发送HTTP请求方法- 留着自用

    /** * 发送HTTP请求方法,目前只支持CURL发送请求 * @param string $url 请求URL * @param array $data POST的数据,GET请求时该参数无效 * ...

  4. Ajax的使用(jquery的下载)

    Ajax学习笔记(jquery的下载) JQuery的官网下载 地址:http://jquery.com 右上角的"Download JQuery" 三个可供下载的文件: Prod ...

  5. 设计一个网上书店,该系统中所有的计算机类图书(ComputerBook)每本都有10%的折扣,所有的语言类图书(LanguageBook)每本都有2元的折扣,小说类图书(NovelBook)每100元

    现使用策略模式来设计该系统,绘制类图并编程实现 UML类图 书籍 package com.zheng; public class Book { private double price;// 价格 p ...

  6. fun无处不在 搜索结果调用其他字段的办法

    一直有人要搜索结果调用其他字段的信息 比如图片等等 一直忙没顾上 官方其实已经内置了一个内容读取器. 我们打开搜索的结果模板template\index_style\你的模板目录\search\ind ...

  7. Silky微服务框架之服务引擎

    构建服务引擎 在注册Silky微服务应用一节中,我们了解到在ConfigureServices阶段,通过IServiceCollection的扩展方法AddSilkyServices<T> ...

  8. CUDA/CUDNN下载安装以及适配pytorch和tensorflow

    CUDA以及CUDNN下载安装 在https://developer.nvidia.com/cuda-toolkit-archive可以找到各个版本的cuda,个人建议下载cuda11.0(也就是2年 ...

  9. debian如何删除无效的应用图标

    1.看/usr/share/applications下是否有xxx.desktop 2.可以到-/.local/share/applications下看是否有xxx.desktop 来源:https: ...

  10. ES6学习笔记(七)正则表达式

    正则表达式 1.基础 1.1 含义: 通俗的来讲,正则表达式是一种匹配和替换的工具.如:在JS中验证手机号时,我们需要考虑用户输入的字符必须是number类型,且必须是11位的整数,且数字的前三位必须 ...