题意

有一个长度为 \(n\) 的数列 \(a_0,a_1,\dots,a_{n-1}\) 以及一个长度为 \(m\) 的操作序列 \((b_0,c_0),(b_1,c_1)\dots(b_{m-1},c_{m-1})\)。

执行 \(t\) 次操作,第 \(i\) 次操作(从 \(1\) 开始编号)执行

\[\text{swap}(a_{(b_{i\bmod m}+i)\bmod n},a_{(b_{i\bmod m}+i)\bmod n})
\]

求最终数列。

\(1\le n,m\le 10^5,t\le 10^{10}\)。

题解

考试题,赛时想了一个巨毒瘤的奇环树+倍增解法,结果 \(200+\) 行代码怒调 \(4\texttt{h}\),还 R 了一个点。只能 \(90\texttt{pts}\) 遗憾离场……正解用到了一个挺妙的 trick,但出题人认为很典(www被嘲讽了

先考虑 \(n\mid m\) 的情形。若我们将操作每 \(m\) 个分为一组,除最后一组外的所有组都是相同的。暴力一遍,可以得到一个置换,因为置换有结合律,用快速幂可以 \(O(n\log t)\) 解决。其实也可以优化到 \(O(n\log n)\),但没必要。

\(n\nmid m\) 时,第 \(i\) 组的每个数在 \(\bmod n\) 意义下比第 \(i-1\) 组大 \(m\)。我们这样考虑:做完第 \(1\) 组后,将数列向左循环移 \(m\) 位,做完剩下的所有组后再移回来。由于操作是 \(\texttt{swap}\),结果不变。那么除最后一组外的所有组又相同了。如上操作,最后循环右移 \(\lfloor\frac{t}{m}\rfloor\times m\) 即可。

SOJ1728 题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

  10. JSOI2016R3 瞎BB题解

    题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...

随机推荐

  1. 手写Pinia存储的数据持久化插件

    Pinia和Vuex的通病 Pinia和vuex的通病就是,页面刷新会导致数据丢失 解决通病 一.新建store import { defineStore } from 'pinia' //单独存放S ...

  2. 温故知新 - 靶机练习-Toppo

    今天闲来无事,重新做了一下以前做过的第一个靶机(https://www.cnblogs.com/sallyzhang/p/12792042.html),这个靶机主要是练习sudo提权,当时不会也没理解 ...

  3. [图像处理] YUV图像处理入门5

    12 yuv420转换为rgb(opencv mat) yuv格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式,而且自己造轮子工作量太大.因此通常都会将yuv转换为rgb, ...

  4. Spark详解(05-1) - SparkCore实战案例

    Spark详解(05-1) - SparkCore实战案例 数据准备 1)数据格式 本项目的数据是采集电商网站的用户行为数据,主要包含用户的4种行为:搜索.点击.下单和支付. (1)数据采用_分割字段 ...

  5. Asp-Net-Core-搭建ELK日志平台-Docker-Compose版本

    title: Asp.Net Core 搭建ELK日志平台(Docker-Compose版本) date: 2022-09-27 15:16:59 tags: - .NET 由于暂时用不上Logsta ...

  6. 轻松解决 CSS 代码都在一行的问题

    前言 最近在做博客园的界面美化,用的是博客园[guangzan]的开源项目,配置超级简单,只需要复制粘贴代码就好啦. 但在粘贴 CSS 代码时遇到一个问题,那就是所有代码都挤在了一行,没有一点排板的样 ...

  7. C# lock 、 Monitor Wait、Pulse和PulseAll 的区别和用法(转载)

    1.Monitor.Wait方法当线程调用 Wait 时,它释放对象的锁并进入对象的等待队列,对象的就绪队列中的下一个线程(如果有)获取锁并拥有对对象的独占使用.Wait()就是交出锁的使用权,使线程 ...

  8. 图文并茂的学习笔记--微信小程序自定义tabbar

    我发现自带的那个tabbar不可以修改样式,没得搞啊,这不行,要改 首先,我们看文档,地址在下面 https://developers.weixin.qq.com/miniprogram/dev/fr ...

  9. 模块化编程相关知识-引入- 异步加载JS - CommonJS-AMD-CMD-ES6-

  10. antd 3.x升4.x踩坑之路~

    我们是袋鼠云数栈 UED 团队,致力于打造优秀的一站式数据中台产品.我们始终保持工匠精神,探索前端道路,为社区积累并传播经验价值. 兼容性问题 第三方依赖兼容问题 React - 最低 v16.9,部 ...