论文笔记 - GRAD-MATCH: A Gradient Matching Based Data Subset Selection For Efficient Learning
Analysis
Coreset 是带有权重的数据子集,目的是在某个方面模拟完整数据的表现(例如损失函数的梯度,既可以是在训练数据上的损失,也可以是在验证数据上的损失);
给出优化目标的定义:
$w^t$ 是 t 轮得到的 coreset 权重,$X_t$ 是 t 轮得到的 coreset,$L$ 既可以是在训练数据上的损失,也可以是在验证数据上的损失,$L_T$ 是在 coreset 上的损失函数,$\theta_t$ 是 t 轮得到模型参数;
最小化 ERR 来使 Coreset 最好地模拟损失函数(训练集或验证集)的梯度。
如何优化这个问题
将其转化为次模函数:
之后可以用贪心算法快速解决。
Tricks
- 只计算最后一层的梯度;
- 现在完整的数据集上跑几个 epoch,获得一个较为靠近的模型权重(类似于 warm-up 和 pre-training);
- 每过 R 个 epoch 再更新 coreset。
论文笔记 - GRAD-MATCH: A Gradient Matching Based Data Subset Selection For Efficient Learning的更多相关文章
- Person Re-identification 系列论文笔记(三):Improving Person Re-identification by Attribute and Identity Learning
Improving Person Re-identification by Attribute and Identity Learning Lin Y, Zheng L, Zheng Z, et al ...
- 论文笔记之:From Facial Parts Responses to Face Detection: A Deep Learning Approach
From Facial Parts Responses to Face Detection: A Deep Learning Approach ICCV 2015 从以上两张图就可以感受到本文所提方法 ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- 论文笔记:Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning
Cross-Domain Visual Matching,即跨域视觉匹配.所谓跨域,指的是数据的分布不一样,简单点说,就是两种数据「看起来」不像.如下图中,(a)一般的正面照片和各种背景角度下拍摄的照 ...
- 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...
- Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...
- 论文笔记:Mastering the game of Go with deep neural networks and tree search
Mastering the game of Go with deep neural networks and tree search Nature 2015 这是本人论文笔记系列第二篇 Nature ...
- 论文笔记-SPP_NET中提到的金字塔
时隔这么久终于考完试放假了,现在终于有时间开始研究spp net的相关内容了,看了几篇网上的博客,发现看完之后还是不是很懂,于是乎下载了spp net的原始论文<Spatial Pyramid ...
- Self-paced Clustering Ensemble自步聚类集成论文笔记
Self-paced Clustering Ensemble自步聚类集成论文笔记 2019-06-23 22:20:40 zpainter 阅读数 174 收藏 更多 分类专栏: 论文 版权声明 ...
随机推荐
- 【Maven】Maven的安装和配置
1.Maven的下载 方式一: 官网:Maven – Welcome to Apache Maven 尽量下载3.5版本,我个人3.8版本从来没用配置成功过. 方式二: 我用的是3.5版本,下载3. ...
- kafka详解(一)--kafka是什么及怎么用
kafka是什么 在回答这个问题之前,我们需要先了解另一个东西--event streaming. 什么是event streaming 我觉得,event streaming 是一个动态的概念,它描 ...
- Docker 搭建 Nexus3 私服 | 基本操作
1 Docker 安装 Nexus3 1.1 创建目录 在硬盘上创建 Nexus3 的主目录: mkdir -p /Users/yygnb/dockerMe/nexus3 为该目录添加权限: chmo ...
- KingbaseES 实现MYSQL hex/unhex 函数
MySQL 的hex 和 unhex 函数类似于KingbaseES 的encode 和 decoding,实现字符与16进制之间的转换. 一.先看MySQL例子 mysql> select h ...
- [CG] 顶点动画贴图 (Vertex Animation Texture, VAT)
什么是顶点动画? 简单来说,通过改变网格顶点的位置,使网格变形从而做成的动画.顶点动画的灵活度要远远高于骨骼动画.骨骼动画是靠骨骼(一堆有层级结构的节点,数量应该是远远小于网格顶点的数量的)的变化来驱 ...
- 璞华HawkEye平台助力乳品行业巨头在数字化转型中领“鲜”一步!
中国乳制品的市场规模接近4,000亿.在今天,产业数字化正在帮助这个传统产业实现更高质量的发展. 乳品行业现状 随着乳品行业规模扩大,各工厂引进大量的专用设备,设备故障也随之增多.设备的突发故障极易造 ...
- Java代码审计之不安全的Java代码
Java代码审计之不安全的Java代码 在打靶场的同时,需要想一下如果你是开发人员你会怎样去防御这种漏洞,而作为攻击方你又怎么去绕过开发人员的防御. 环境搭建 https://github.com ...
- Scrum五大会议要怎么开?
在Scrum框架中,我们对Scrum的五个会议一定都不陌生,但如何组织这五个会议,才能让Scrum团队真正积极.主动地参与进项目管理中呢?接下来我们会以一个Sprint为周期,详细介绍一下Sprint ...
- day03-2无异常退出
多用户即时通讯系统03 4.编码实现02 4.3功能实现-无异常退出系统 4.3.1思路分析 上述代码运行时,在客户端选择退出系统的时候,可以发现程序并没有停止运行,原因是: 退出时,程序将循环标志l ...
- kratos v2版本命令行工具使用
使用 下载 go install github.com/go-kratos/kratos/cmd/kratos/v2@latest 查看是否安装成功 kratos -v kratos version ...