一,剪枝分类

所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差(weigths/bias)的模型压缩技术。关于什么参数才是“不必要的”,这是一个目前依然在研究的领域。

1.1,非结构化剪枝

非结构化剪枝(Unstructured Puning)是指修剪参数的单个元素,比如全连接层中的单个权重、卷积层中的单个卷积核参数元素或者自定义层中的浮点数(scaling floats)。其重点在于,剪枝权重对象是随机的,没有特定结构,因此被称为非结构化剪枝

1.2,结构化剪枝

与非结构化剪枝相反,结构化剪枝会剪枝整个参数结构。比如,丢弃整行或整列的权重,或者在卷积层中丢弃整个过滤器(Filter)。

1.3,本地与全局修剪

剪枝可以在每层(局部)或多层/所有层(全局)上进行。

二,PyTorch 的剪枝

目前 PyTorch 框架支持的权重剪枝方法有:

  • Random: 简单地修剪随机参数。
  • Magnitude: 修剪权重最小的参数(例如它们的 L2 范数)

以上两种方法实现简单、计算容易,且可以在没有任何数据的情况下应用。

2.1,pytorch 剪枝工作原理

剪枝功能在 torch.nn.utils.prune 类中实现,代码在文件 torch/nn/utils/prune.py 中,主要剪枝类如下图所示。

剪枝原理是基于张量(Tensor)的掩码(Mask)实现。掩码是一个与张量形状相同的布尔类型的张量,掩码的值为 True 表示相应位置的权重需要保留,掩码的值为 False 表示相应位置的权重可以被删除。

Pytorch 将原始参数 <param> 复制到名为 <param>_original 的参数中,并创建一个缓冲区来存储剪枝掩码 <param>_mask。同时,其也会创建一个模块级的 forward_pre_hook 回调函数(在模型前向传播之前会被调用的回调函数),将剪枝掩码应用于原始权重。

pytorch 剪枝的 api 和教程比较混乱,我个人将做了如下表格,希望能将 api 和剪枝方法及分类总结好。

pytorch 中进行模型剪枝的工作流程如下:

  1. 选择剪枝方法(或者子类化 BasePruningMethod 实现自己的剪枝方法)。
  2. 指定剪枝模块和参数名称。
  3. 设置剪枝方法的参数,比如剪枝比例等。

2.2,局部剪枝

Pytorch 框架中的局部剪枝有非结构化和结构化剪枝两种类型,值得注意的是结构化剪枝只支持局部不支持全局。

2.2.1,局部非结构化剪枝

1,局部非结构化剪枝(Locall Unstructured Pruning)对应函数原型如下:

def random_unstructured(module, name, amount)

1,函数功能

用于对权重参数张量进行非结构化剪枝。该方法会在张量中随机选择一些权重或连接进行剪枝,剪枝率由用户指定。

2,函数参数定义:

  • module (nn.Module): 需要剪枝的网络层/模块,例如 nn.Conv2d() 和 nn.Linear()。
  • name (str): 要剪枝的参数名称,比如 "weight" 或 "bias"。
  • amount (int or float): 指定要剪枝的数量,如果是 0~1 之间的小数,则表示剪枝比例;如果是证书,则直接剪去参数的绝对数量。比如amount=0.2 ,表示将随机选择 20% 的元素进行剪枝。

3,下面是 random_unstructured 函数的使用示例。

import torch
import torch.nn.utils.prune as prune
conv = torch.nn.Conv2d(1, 1, 4)
prune.random_unstructured(conv, name="weight", amount=0.5)
conv.weight
"""
tensor([[[[-0.1703, 0.0000, -0.0000, 0.0690],
[ 0.1411, 0.0000, -0.0000, -0.1031],
[-0.0527, 0.0000, 0.0640, 0.1666],
[ 0.0000, -0.0000, -0.0000, 0.2281]]]], grad_fn=<MulBackward0>)
"""

可以看书输出的 conv 层中权重值有一半比例为 0

2.2.2,局部结构化剪枝

局部结构化剪枝(Locall Structured Pruning)有两种函数,对应函数原型如下:

def random_structured(module, name, amount, dim)
def ln_structured(module, name, amount, n, dim, importance_scores=None)

1,函数功能

与非结构化移除的是连接权重不同,结构化剪枝移除的是整个通道权重。

2,参数定义

与局部非结构化函数非常相似,唯一的区别是您必须定义 dim 参数(ln_structured 函数多了 n 参数)。

n 表示剪枝的范数,dim 表示剪枝的维度。

对于 torch.nn.Linear:

  • dim = 0: 移除一个神经元。

  • dim = 1:移除与一个输入的所有连接。

对于 torch.nn.Conv2d:

  • dim = 0(Channels) : 通道 channels 剪枝/过滤器 filters 剪枝
  • dim = 1(Neurons): 二维卷积核 kernel 剪枝,即与输入通道相连接的 kernel

2.2.3,局部结构化剪枝示例代码

在写示例代码之前,我们先需要理解 Conv2d 函数参数、卷积核 shape、轴以及张量的关系。

首先,Conv2d 函数原型如下;

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

而 pytorch 中常规卷积的卷积核权重 shape 都为(C_out, C_in, kernel_height, kernel_width),所以在代码中卷积层权重 shape[3, 2, 3, 3],dim = 0 对应的是 shape [3, 2, 3, 3] 中的 3。这里我们 dim 设定了哪个轴,那自然剪枝之后权重张量对应的轴机会发生变换。

理解了前面的关键概念,下面就可以实际使用了,dim=0 的示例如下所示。

conv = torch.nn.Conv2d(2, 3, 3)
norm1 = torch.norm(conv.weight, p=1, dim=[1,2,3])
print(norm1)
"""
tensor([1.9384, 2.3780, 1.8638], grad_fn=<NormBackward1>)
"""
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=0)
print(conv.weight)
"""
tensor([[[[-0.0005, 0.1039, 0.0306],
[ 0.1233, 0.1517, 0.0628],
[ 0.1075, -0.0606, 0.1140]], [[ 0.2263, -0.0199, 0.1275],
[-0.0455, -0.0639, -0.2153],
[ 0.1587, -0.1928, 0.1338]]], [[[-0.2023, 0.0012, 0.1617],
[-0.1089, 0.2102, -0.2222],
[ 0.0645, -0.2333, -0.1211]], [[ 0.2138, -0.0325, 0.0246],
[-0.0507, 0.1812, -0.2268],
[-0.1902, 0.0798, 0.0531]]], [[[ 0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, -0.0000],
[ 0.0000, -0.0000, 0.0000]], [[ 0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, 0.0000],
[-0.0000, -0.0000, -0.0000]]]], grad_fn=<MulBackward0>)
"""

从运行结果可以明显看出,卷积层参数的最后一个通道参数张量被移除了(为 0 张量),其解释参见下图。

dim = 1 的情况:

conv = torch.nn.Conv2d(2, 3, 3)
norm1 = torch.norm(conv.weight, p=1, dim=[0, 2,3])
print(norm1)
"""
tensor([3.1487, 3.9088], grad_fn=<NormBackward1>)
"""
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=1)
print(conv.weight)
"""
tensor([[[[ 0.0000, -0.0000, -0.0000],
[-0.0000, 0.0000, 0.0000],
[-0.0000, 0.0000, -0.0000]], [[-0.2140, 0.1038, 0.1660],
[ 0.1265, -0.1650, -0.2183],
[-0.0680, 0.2280, 0.2128]]], [[[-0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, -0.0000],
[-0.0000, -0.0000, -0.0000]], [[-0.2087, 0.1275, 0.0228],
[-0.1888, -0.1345, 0.1826],
[-0.2312, -0.1456, -0.1085]]], [[[-0.0000, 0.0000, 0.0000],
[ 0.0000, -0.0000, 0.0000],
[ 0.0000, -0.0000, 0.0000]], [[-0.0891, 0.0946, -0.1724],
[-0.2068, 0.0823, 0.0272],
[-0.2256, -0.1260, -0.0323]]]], grad_fn=<MulBackward0>)
"""

很明显,对于 dim=1的维度,其第一个张量的 L2 范数更小,所以shape 为 [2, 3, 3] 的张量中,第一个 [3, 3] 张量参数会被移除(即张量为 0 矩阵) 。

2.3,全局非结构化剪枝

前文的 local 剪枝的对象是特定网络层,而 global 剪枝是将模型看作一个整体去移除指定比例(数量)的参数,同时 global 剪枝结果会导致模型中每层的稀疏比例是不一样的。

全局非结构化剪枝函数原型如下:

# v1.4.0 版本
def global_unstructured(parameters, pruning_method, **kwargs)
# v2.0.0-rc2版本
def global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs):

1,函数功能

随机选择全局所有参数(包括权重和偏置)的一部分进行剪枝,而不管它们属于哪个层。

2,参数定义

  • parameters((Iterable of (module, name) tuples)): 修剪模型的参数列表,列表中的元素是 (module, name)。
  • pruning_method(function): 目前好像官方只支持 pruning_method=prune.L1Unstuctured,另外也可以是自己实现的非结构化剪枝方法函数。
  • importance_scores: 表示每个参数的重要性得分,如果为 None,则使用默认得分。
  • **kwargs: 表示传递给特定剪枝方法的额外参数。比如 amount 指定要剪枝的数量。

3,global_unstructured 函数的示例代码如下所示。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square conv kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5x5 image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, int(x.nelement() / x.shape[0]))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x model = LeNet().to(device=device) model = LeNet() parameters_to_prune = (
(model.conv1, 'weight'),
(model.conv2, 'weight'),
(model.fc1, 'weight'),
(model.fc2, 'weight'),
(model.fc3, 'weight'),
) prune.global_unstructured(
parameters_to_prune,
pruning_method=prune.L1Unstructured,
amount=0.2,
)
# 计算卷积层和整个模型的稀疏度
# 其实调用的是 Tensor.numel 内内函数,返回输入张量中元素的总数
print(
"Sparsity in conv1.weight: {:.2f}%".format(
100. * float(torch.sum(model.conv1.weight == 0))
/ float(model.conv1.weight.nelement())
)
)
print(
"Global sparsity: {:.2f}%".format(
100. * float(
torch.sum(model.conv1.weight == 0)
+ torch.sum(model.conv2.weight == 0)
+ torch.sum(model.fc1.weight == 0)
+ torch.sum(model.fc2.weight == 0)
+ torch.sum(model.fc3.weight == 0)
)
/ float(
model.conv1.weight.nelement()
+ model.conv2.weight.nelement()
+ model.fc1.weight.nelement()
+ model.fc2.weight.nelement()
+ model.fc3.weight.nelement()
)
)
)
# 程序运行结果
"""
Sparsity in conv1.weight: 3.70%
Global sparsity: 20.00%
"""

运行结果表明,虽然模型整体(全局)的稀疏度是 20%,但每个网络层的稀疏度不一定是 20%。

三,总结

另外,pytorch 框架还提供了一些帮助函数:

  1. torch.nn.utils.prune.is_pruned(module): 判断模块 是否被剪枝。
  2. torch.nn.utils.prune.remove(module, name): 用于将指定模块中指定参数上的剪枝操作移除,从而恢复该参数的原始形状和数值。

虽然 PyTorch 提供了内置剪枝 API ,也支持了一些非结构化和结构化剪枝方法,但是 API 比较混乱,对应文档描述也不清晰,所以后面我还会结合微软的开源 nni 工具来实现模型剪枝功能。

参考资料

  1. How to Prune Neural Networks with PyTorch
  2. PRUNING TUTORIAL
  3. PyTorch Pruning

基于pytorch实现模型剪枝的更多相关文章

  1. 实践torch.fx第一篇——基于Pytorch的模型优化量化神器

    第一篇--什么是torch.fx 今天聊一下比较重要的torch.fx,也趁着这次机会把之前的torch.fx笔记整理下,笔记大概拆成三份,分别对应三篇: 什么是torch.fx 基于torch.fx ...

  2. 目标检测-基于Pytorch实现Yolov3(1)- 搭建模型

    原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快 ...

  3. zz模型剪枝

    论文总结 - 模型剪枝 Model Pruning  发表于 2018-10-03 模型剪枝是常用的模型压缩方法之一.这篇是最近看的模型剪枝相关论文的总结. Deep Compression, Han ...

  4. 基于pytorch的电影推荐系统

    本文介绍一个基于pytorch的电影推荐系统. 代码移植自https://github.com/chengstone/movie_recommender. 原作者用了tf1.0实现了这个基于movie ...

  5. 基于Pytorch的简单小案例

    神经网络的理论知识不是本文讨论的重点,假设读者们都是已经了解RNN的基本概念,并希望能用一些框架做一些简单的实现.这里推荐神经网络必读书目:邱锡鹏<神经网络与深度学习>.本文基于Pytor ...

  6. [炼丹术]使用Pytorch搭建模型的步骤及教程

    使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加 ...

  7. 基于 PyTorch 和神经网络给 GirlFriend 制作漫画风头像

    摘要:本文中我们介绍的 AnimeGAN 就是 GitHub 上一款爆火的二次元漫画风格迁移工具,可以实现快速的动画风格迁移. 本文分享自华为云社区<AnimeGANv2 照片动漫化:如何基于 ...

  8. 使用LabVIEW实现基于pytorch的DeepLabv3图像语义分割

    前言 今天我们一起来看一下如何使用LabVIEW实现语义分割. 一.什么是语义分割 图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割,例 ...

  9. 【tornado】系列项目(二)基于领域驱动模型的区域后台管理+前端easyui实现

    本项目是一个系列项目,最终的目的是开发出一个类似京东商城的网站.本文主要介绍后台管理中的区域管理,以及前端基于easyui插件的使用.本次增删改查因数据量少,因此采用模态对话框方式进行,关于数据量大采 ...

  10. 【tornado】系列项目(一)之基于领域驱动模型架构设计的京东用户管理后台

    本博文将一步步揭秘京东等大型网站的领域驱动模型,致力于让读者完全掌握这种网络架构中的“高富帅”. 一.预备知识: 1.接口: python中并没有类似java等其它语言中的接口类型,但是python中 ...

随机推荐

  1. MIUI12解决安装charles抓包安装证书后还是提示证书不安全

    前言 我抓包这么长时间,这个问题我还是第一次遇到,导致我反复试验,明明安装证书还是提示不安全.我用新买的手机MIUI 12系统弄了半天 解决方案 首先下载证书这部分是一个坑,小米 MIUI 12系统下 ...

  2. 初次邂逅 EasyExcel

    前言 由于工作原因,有这种需求,就是把数据库中的数据导出成 Excel 表格,同时,也得支持人家用 Excel 表格导入数据到数据库.当前项目也是在用 EasyExcel,所以我不得不学啦! 以前学习 ...

  3. web项目的开发--第一天

    如何分析需求.如何设计.编码实现.测试. 用ssm架构实现CRM项目代码编写. CRM项目: 关键是养成好的编程思想和编程习惯. 技术架构 视图层(view): 展示数据,跟用户交互. html,cs ...

  4. 【每日一题】【将cur的next尾插到pre后面,尾插k-1次】25. K 个一组翻转链表-211115&220120

    给你一个链表,每 k 个节点一组进行翻转,请你返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度. 如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序. 进阶: 你可以设 ...

  5. Java中的反射机制及反射的优缺点

    1. 反射的概念 反射 机制指的是,程序在运行时能够获取自身的信息.在 java 中只要给定类的名字,就能够获取类的所有属性和方法. 反射是 Java 中很多高级特性的基础,比如 注解.动态代理 以及 ...

  6. BOM与DOM之BOM操作

    目录 一:BOM与DOM操作 1.BOM与DOM操作 二:BOM操作 1.常用的Window方法: 2.案例实操 3.打开新窗口 4.关闭当前页面 三:window的子对象 1.navigator对象 ...

  7. MySQL单表查询(分组-筛选-过滤-去重-排序-分页-判断-正则)

    目录 一:单表查询 1.单表查询(前期准备) 2.插入记录(写入数据) 3.查询关键字 二:查询关键字之where 1.查询id大于等于3小于等于6的数据 2.查询薪资是20000或者18000或者1 ...

  8. java中方法传参形式

    成员方法传参形式: 1.基本数据类型:传递的是值 public class Object03 { public static void main(String[] args) { AA aa = ne ...

  9. Linux命令篇 - nc(ncat) 命令

    nc (ncat) Ncat is a feature-packed networking utility which reads and writes data across networks fr ...

  10. S2-017 CVE-2013-2248

    漏洞名称 Apache Struts 多个开放重定向漏洞 (CVE-2013-2248) s2-017 利用条件 Struts 2.0.0 - Struts 2.3.15 漏洞原理 通过操作前缀为&q ...