【BZOJ4817】[Sdoi2017]树点涂色 LCT+线段树
【BZOJ4817】[Sdoi2017]树点涂色
Description
Input
Output
Sample Input
1 2
2 3
3 4
3 5
2 4 5
3 3
1 4
2 4 5
1 5
2 4 5
Sample Output
4
2
2
题解:做过重组病毒那题再做这题就水了。
发现1操作可以看成LCT的access操作,而一个点到根路径的权值就是该点在LCT中到根路径上的虚边数量。所以我们用LCT模拟这个过程,在access的时候顺便改一下子树内的虚边数量即可。可以用线段树实现。
那么已知了一个点到根路径上的权值,如何求一条路径的权值呢?如果a,b的lca是c,那么自己画画就知道,答案是:a路径的权值+b路径的权值-2*c路径的权值+1。
#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=100010; struct LCT
{
int ch[2],fa,L;
}s[maxn];
int n,m,cnt;
int fa[19][maxn],to[maxn<<1],next[maxn<<1],head[maxn],Log[maxn],dep[maxn],p[maxn],q[maxn],Q[maxn],sm[maxn<<2],ts[maxn<<2];
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
p[x]=++q[0],Q[q[0]]=x;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[0][x]) fa[0][to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
q[x]=q[0];
}
inline int lca(int a,int b)
{
if(dep[a]<dep[b]) swap(a,b);
for(int i=Log[dep[a]-dep[b]];i>=0;i--) if(dep[fa[i][a]]>=dep[b]) a=fa[i][a];
if(a==b) return a;
for(int i=Log[dep[a]];i>=0;i--) if(fa[i][a]!=fa[i][b]) a=fa[i][a],b=fa[i][b];
return fa[0][a];
}
inline bool isr(int x) {return s[s[x].fa].ch[0]!=x&&s[s[x].fa].ch[1]!=x;}
inline void pushup(int x)
{
if(s[x].ch[0]) s[x].L=s[s[x].ch[0]].L;
else s[x].L=x;
}
inline void rotate(int x)
{
int y=s[x].fa,z=s[y].fa,d=(x==s[y].ch[1]);
if(!isr(y)) s[z].ch[y==s[z].ch[1]]=x;
s[x].fa=z,s[y].fa=x,s[y].ch[d]=s[x].ch[d^1];
if(s[x].ch[d^1]) s[s[x].ch[d^1]].fa=y;
s[x].ch[d^1]=y;
pushup(y),pushup(x);
}
inline void splay(int x)
{
while(!isr(x))
{
int y=s[x].fa,z=s[y].fa;
if(!isr(y))
{
if((x==s[y].ch[0])^(y==s[z].ch[0])) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline void pushdown(int x)
{
if(ts[x]) sm[lson]+=ts[x],ts[lson]+=ts[x],sm[rson]+=ts[x],ts[rson]+=ts[x],ts[x]=0;
}
void build(int l,int r,int x)
{
if(l==r)
{
sm[x]=dep[Q[l]];
return ;
}
int mid=(l+r)>>1;
build(l,mid,lson),build(mid+1,r,rson);
sm[x]=max(sm[lson],sm[rson]);
}
void updata(int l,int r,int x,int a,int b,int val)
{
if(a<=l&&r<=b)
{
sm[x]+=val,ts[x]+=val;
return ;
}
pushdown(x);
int mid=(l+r)>>1;
if(a<=mid) updata(l,mid,lson,a,b,val);
if(b>mid) updata(mid+1,r,rson,a,b,val);
sm[x]=max(sm[lson],sm[rson]);
}
int query(int l,int r,int x,int a,int b)
{
if(a<=l&&r<=b) return sm[x];
pushdown(x);
int mid=(l+r)>>1;
if(b<=mid) return query(l,mid,lson,a,b);
if(a>mid) return query(mid+1,r,rson,a,b);
return max(query(l,mid,lson,a,b),query(mid+1,r,rson,a,b));
}
inline void sumup(int x,int val) {if(x) updata(1,n,1,p[x],q[x],val);}
inline void access(int x)
{
for(int y=0;x;)
{
splay(x);
sumup(s[s[x].ch[1]].L,1),sumup(s[y].L,-1),s[x].ch[1]=y,pushup(x),y=x,x=s[x].fa;
}
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,j,a,b,c,op;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
dep[1]=1,dfs(1);
for(i=2;i<=n;i++) Log[i]=Log[i>>1]+1;
for(j=1;(1<<j)<=n;j++) for(i=1;i<=n;i++) fa[j][i]=fa[j-1][fa[j-1][i]];
for(i=1;i<=n;i++) s[i].fa=fa[0][i],s[i].L=i;
build(1,n,1);
for(i=1;i<=m;i++)
{
op=rd(),a=rd();
if(op==1) access(a),splay(a);
if(op==2)
{
b=rd(),c=lca(a,b);
printf("%d\n",query(1,n,1,p[a],p[a])+query(1,n,1,p[b],p[b])-2*query(1,n,1,p[c],p[c])+1);
}
if(op==3) printf("%d\n",query(1,n,1,p[a],q[a]));
}
return 0;
}//5 3 1 2 2 3 3 4 3 5 1 4 1 5 2 4 5
【BZOJ4817】[Sdoi2017]树点涂色 LCT+线段树的更多相关文章
- 【BZOJ4817】【SDOI2017】树点涂色 [LCT][线段树]
树点涂色 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Bob有一棵n个点的有根树,其中1 ...
- [Sdoi2017]树点涂色 [lct 线段树]
[Sdoi2017]树点涂色 题意:一棵有根树,支持x到根染成新颜色,求x到y颜色数,求x子树里点到根颜色数最大值 考场发现这个信息是可减的,但是没想到lct 特意设计成lct的形式! 如何求颜色数? ...
- [SDOI2017][bzoj4817] 树点涂色 [LCT+线段树]
题面 传送门 思路 $LCT$ 我们发现,这个1操作,好像非常像$LCT$里面的$Access$啊~ 那么我们尝试把$Access$操作魔改成本题中的涂色 我们令$LCT$中的每一个$splay$链代 ...
- BZOJ4817[Sdoi2017]树点涂色——LCT+线段树
题目描述 Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进 ...
- bzoj4817 & loj2001 [Sdoi2017]树点涂色 LCT + 线段树
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4817 https://loj.ac/problem/2001 题解 可以发现这个题就是 bzo ...
- BZOJ 4817 [SDOI2017]树点涂色 (LCT+线段树维护dfs序)
题目大意:略 涂色方式明显符合$LCT$里$access$操作的性质,相同颜色的节点在一条深度递增的链上 用$LCT$维护一个树上集合就好 因为它维护了树上集合,所以它别的啥都干不了了 发现树是静态的 ...
- 【bzoj4817】树点涂色 LCT+线段树+dfs序
Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...
- BZOJ 4817 [Sdoi2017]树点涂色 ——LCT 线段树
同BZOJ3779. SDOI出原题,还是弱化版的. 吃枣药丸 #include <map> #include <cmath> #include <queue> # ...
- BZOJ 4817: [Sdoi2017]树点涂色(lct+线段树)
传送门 解题思路 跟重组病毒这道题很像.只是有了一个询问\(2\)的操作,然后询问\(2\)的答案其实就是\(val[x]+val[y]-2*val[lca(x,y)]+1\)(画图理解).剩下的操作 ...
随机推荐
- 【CI】系列三.宿主机KVM配置及vdi与vmdk格式转换等
前提:宿主机需要支持虚拟化,如果未打开,则需要重启机器,在bois中打开该项: Ubuntu 及 KVM 相关主要参考官方 https://wiki.ubuntu.com/kvm 另外也可参考该页面: ...
- lodash escapeRegExp 转义正则特殊字符
_.escapeRegExp([string='']) 转义RegExp 中特殊的字符 "^", "$", "\", ".&quo ...
- JavaScript逻辑运算符(操作数运算符)
1.概述 ||(或)和&&(与)都是逻辑运算符.但是或/与叫“逻辑运算符”不太合适,叫“操作数运算符”更合适! 因为||(或)和&&(与)返回的不是布尔值,而是两个操作 ...
- C++高级进阶 第四季:const具体解释(二) 常量折叠
一.文章来由 const具体解释之二 二.const 取代 #define const最初动机就是取代 #define. const 优于 #define: (1) #define没有类型检查,con ...
- Zabbix触发器函数(取前后差值)
获取最新值last zabbix触发器方法last用于获取item最新值或者第几个值以及某个时间的哪一个值. Last (most recent) T value is > N Last (mo ...
- android-seekbar的thumb图片不居中显示的处理办法
seekbar更换图片后,发现thumb的图片不会居中(竖直方向)显示了,代码如下: <SeekBar android:id="@+id/wb_seekbar" androi ...
- Jenkins集成Docker实现镜像构建和线上发布
原文地址:http://www.cnblogs.com/keithtt/p/6410229.html 大概过程如下图: 由于需要用到docker打包镜像,jenkins宿主机上需要安装docker,原 ...
- Azure Storage 分块上传
概述 Azure 存储提供三种类型的 Blob:块 Blob.页 Blob 和追加 Blob.其中,块 Blob 特别适用于存储短的文本或二进制文件,例如文档和媒体文件. 块 Blob 由块组成,每个 ...
- 《C#程序设计教程 -李春保》阅读笔记
<C#程序设计教程 -李春保>阅读笔记 ( 需注意程度:红>粗体>下划线,蓝色:我的疑问 ) 老师的引言 [师]对待一种新语言的关注点 数据类型定义(python不用定 ...
- IOS推送通知測试工具PushMeBaby
下载了PushMeBaby在xcode5里中不能使用.类库变了.须要加入Carbon.framework库.在引用的地方改成: #include <Carbon/Carbon.h>.程序就 ...