there exists and all

there exists

证明根号2是无理数

all

习题

3. Which of the following formal propositions says that there is no largest prime. (There may be more than one. You have to select all correct propositions.) The variables denote natural numbers. [6 points]

¬∃x∃y[Prime(x)∧¬Prime(y)∧(x<y)]

∀x∃y[Prime(x)∧Prime(y)∧(x<y)]

∀x∀y[Prime(x)∧Prime(y)∧(x<y)]

∀x∃y[Prime(y)∧(x<y)]

∃x∀y[Prime(y)∧(x<y)]

∀x∃y[Prime(x)∧(x<y)]

解析:

∀x∃y[Prime(x)∧Prime(y)∧(x<y)]

对于任意的x,存在y,使得x是素数,y是素数并且 x 小于 y。我认为这个可以表示出不存在最大素数的意思。所以是正确的。

驳斥上面的:对于任意x,x是素数,这个是错误的。如果改成存在,就是对的,但不能表现出题中的意思。

答案是 ∀x∃y[Prime(y)∧(x<y)]。

对于任意x,存在素数y,使得 x < y。即,存在比x更大的素数。

如果要改成“任意素数x,存在素数y,使得 x < y。即,存在比x更大的素数。”,该怎么改?

(∀x属于Prime)(∃y)[Prime(x)∧Prime(y)∧(x<y)]

4.

The symbol ∃!x means "There exists a unique x such that ...'' Which of the following accurately defines the expression ∃!xϕ(x)? [5 points]

∃x∀y[ϕ(x)∧[ϕ(y)⇒(x≠y)]]

∃x[ϕ(x)∧(∃y)[ϕ(y)⇒(x≠y)]]

∃x∃y[(ϕ(x)∧ϕ(y))⇒(x=y)]

[∃xϕ(x)]∧(∀y)[ϕ(y)⇒(x=y)]

∃x[ϕ(x)∧(∀y)[ϕ(y)⇒(x=y)]]

解析:

题目  ∃!xϕ(x) 的意思

只存在一个数,能使 ϕ(x) 为 True

[∃xϕ(x)]∧(∀y)[ϕ(y)⇒(x=y)]

存在一个数x使得 ϕ(x) 为 True,并且对于任意y,如果ϕ(y),那么 x=y,x未定义

∃x[ϕ(x)∧(∀y)[ϕ(y)⇒(x=y)]]

存在一个数x使得ϕ(x)成立,并且这个数x,对于任意y,如果ϕ(y),那么 x=y。

这里与上面的不同是:(∀y)[ϕ(y)⇒(x=y) 与 x 存在有关。答案是有关,因为 x = y,而上面的后方,y 是没有定义的。所以大难是这个。

5. Which of the following means "The arithmetic operation x↑y is not commutative." (↑ is just some arbitrary binary operation.) [3 points]

∀x∀y[x↑y≠y↑x]

∀x∃y[x↑y≠y↑x]

∃x∃y[x↑y≠y↑x]

∃x∀y[x↑y≠y↑x]

解析:

Commutative: ∀x∀y[x↑y=y↑x]

Not commutative: ∃x∃y[x↑y≠y↑x]

not ∀ = ∃?

解析:

Introduction to Mathematical Thinking - Week 3的更多相关文章

  1. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  2. Introduction to Mathematical Thinking - Week 9 评论答案2

    根据 rubic 打分. 1. 我认为,如果说明 m, n 是自然数,所以最小值是 1 会更清楚.所以 Clarity 我给了 3 分.其他都是 4 分,所以一共是 23 分. 2.  我给出的分数 ...

  3. Introduction to Mathematical Thinking - Week 9

    错题 评分出错 题目要求的是 "any" ,而答案只给出了一个.所以认为回答者没有理解题意,连 any 都没有理解.所以 0 分. 第一,标准的归纳法只能对自然数使用,而题目要求的 ...

  4. Introduction to Mathematical Thinking - Week 7

    Q: Why did nineteenth century mathematicians devote time to the proof of self-evident results? Selec ...

  5. Introduction to Mathematical Thinking - Week 4

    否定的逻辑 应该思考符号背后表示的逻辑,而不是像操作算术运算符一样操作逻辑符号. 比如 对于任意的 x,x属于自然数,那么 x 是偶数或者奇数:这是对的 如果使用“乘法分配律”拆分,变成“对于任意的x ...

  6. Introduction to Mathematical Thinking - Week 2

    基本数学概念 real number(实数):是有理数和无理数的总称 有理数:可以表达为两个整数比的数(a/b, b!=0) 无理数是指除有理数以外的实数 imply -- 推导出 不需要 A 能推导 ...

  7. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  8. Technical Development Guide---for Google

    Technical Development Guide This guide provides tips and resources to help you develop your technica ...

  9. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

随机推荐

  1. [C++设计模式] command 命令模式

    在软件系统中,"行为请求者"与"行为实现者"通常呈现一种"紧耦合". 但在某些场合,比方要对行为进行"记录.撤销/重做.事务&qu ...

  2. java学习路线-Java技术人员之路从0基础到高级

    满满的  全是干货 java基础: 尚学堂 马士兵   个人推荐 历经5年锤练--史上最适合刚開始学习的人入门的Java基础视频   很具体   适合 时间多的看 传智播客java基础班 马士兵线程 ...

  3. iOS开发-在Swift里使用AFNetworking方法

    在OC里使用惯了AFNetworking,比较喜欢这一个第三方库,在别的途径里得知可以在Swift里使用AFNetworking.但是那个时候我不知道具体的操作是怎样的,于是我只能去百度.GOOGLE ...

  4. Pattern Recognition and Machine Learning 模式识别与机器学习

    模式识别(PR)领域:     关注的是利⽤计算机算法⾃动发现数据中的规律,以及使⽤这些规律采取将数据分类等⾏动. 聚类:目标是发现数据中相似样本的分组. 反馈学习:是在给定的条件下,找到合适的动作, ...

  5. ORM进阶之Hibernate 的三大对象

    ORM进阶之 ORM简单介绍 ORM进阶之Hibernate 简单介绍及框架搭 ORM进阶之Hibernate 的三大对象 我们在上一篇博客中讲到了怎样搭建一个Hibernate框架, 提到Hiber ...

  6. Atitit. . 软件命名空间与类名命名单词的统计程序设计v2

    Atitit. . 软件命名空间与类名命名单词的统计程序设计v2 1. 要实现的目标1 1.1. Camel字符串模式的分词处理1 1.2. 多个大写的处理1 1.3. 数字与字幕的分离1 1.4.  ...

  7. html x

    使用 Target 属性,下面的这行会在新窗口打开文档:<a href="http://www.w3school.com.cn/" target="_blank&q ...

  8. Apache配置文件详解

    1.1 ServerRoot 配置 [ServerRoot "" 主要用于指定Apache的安装路径,此选项参数值在安装Apache时系统会自动把Apache的路径写入.Windo ...

  9. iOS TableView索引字体大小设置

    -(void)tableView:(UITableView *)tableView willDisplayHeaderView:(UIView *)view forSection:(NSInteger ...

  10. 用kaptcha生成验证码

    1.新建web项目,导入jar包:kaptcha-2.3.jar 2.配置web.xml代码如下: <?xml version="1.0" encoding="UT ...