题面

luogu

题解

裸的错排问题

错排问题

百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排;有的叫重排。如,1 2的错排是唯一的,即2 1。1 2 3的错排有3 1 2,2 3 1。这二者可以看作是1 2错排,3分别与1、2换位而得的。

错排公式:\(D(n) = (n-1)*(D(n-1)+D(n-2))\)

这里给出解释:

对于错排可以看作连线

A B ...... C

a b ...... c

\(A\)不能连\(a\),

同理,\(B\)不能连\(b\),\(C\)不能连\(c\)

考虑\(c\)连线

有\((n-1)\)种方案

假设\(A-c\)

那么考虑\(a\)如何连

1.如果\(C-a\)那么剩下的又是一个错排,即\(D(n-2)\)

2.如果\(a\)不连\(C\), 那么也可以构成一个错排,即\(D(n-1)\)

问题转换

如何转换成错排问题呢?

因为每行每列都只有一个棋子,且不能放在障碍上。

那么可以看作对障碍的错排

然后就是高精度板子了

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 10005;
struct node {
int s[N], cnt;
node(){
memset(s, 0, sizeof(s)); cnt = 0;
}
node operator + (node z) const {
node tmp;
tmp.cnt = max(cnt, z.cnt);
for (int i = 0; i < tmp.cnt; i++)
tmp.s[i] = s[i]+z.s[i];
for (int i = 0; i < tmp.cnt; i++)
if (tmp.s[i] > 9) {
tmp.s[i+1] += tmp.s[i]/10;
if (i+1 == tmp.cnt) tmp.cnt++;
tmp.s[i] %= 10;
}
return tmp;
}
node operator * (int z) const {
node tmp;
tmp.cnt = cnt;
for (int i = 0; i < tmp.cnt; i++)
tmp.s[i] = s[i]*z;
for (int i = 0; i < tmp.cnt; i++)
if (tmp.s[i] > 9) {
tmp.s[i+1] += tmp.s[i]/10;
if (i+1 == tmp.cnt) tmp.cnt++;
tmp.s[i] %= 10;
}
return tmp;
}
}; node D[210]; int main() {
int n;
read(n);
D[2].s[0] = D[2].cnt = D[1].cnt = 1;
for (int i = 3; i <= n; i++)
D[i] = (D[i-1]+D[i-2])*(i-1);
for (int i = D[n].cnt-1; i >= 0; i--)
printf("%d", D[n].s[i]);
return 0;
}

洛谷 P3182 [HAOI2016]放棋子(错排问题)的更多相关文章

  1. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  2. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  3. 【BZOJ4563】[Haoi2016]放棋子 错排+高精度

    [BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...

  4. bzoj4563: [Haoi2016]放棋子(错排+高精)

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status] ...

  5. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  6. 洛谷P3158 [CQOI2011]放棋子 组合数学+DP

    题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...

  7. 洛谷P1595 信封问题 题解 错排问题

    作者:zifeiy 标签:排列组合,错排问题 题目链接:https://www.luogu.org/problem/P1595 题目描述:某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都 ...

  8. JZYZOJ1544 [haoi2016T2]放棋子 错排公式 组合数学 高精度

    http://172.20.6.3/Problem_Show.asp?ID=1544&a=ProbNF 看了题解才意识到原题有错排的性质(开始根本不知道错排是什么). 十本不同的书放在书架上. ...

  9. [Haoi2016]放棋子 题解

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 285[Submit][Status] ...

随机推荐

  1. array_splice()函数 ,删除数组中的某个值

    array_splice() 这个函数是真的皮,有好多种方法,但是最后还是在PHP官方的文档找到了合理的解释的用法 花了大概半个小时 $arr = array('a','b','c','d'); ar ...

  2. Chrome,firefox,ie等浏览器空格&nbsp;宽度不一样

    方案一:使用其他字符代替空格 使用(&nbsp:)空格浏览器之间,显示的不一样,对不齐等现象. 解决方案: 用半角空格&ensp:或者全角空格&emsp:就可以了,&e ...

  3. Java,Calendar -- 获取当前日期、当月月初日期、月末日期

    public class CalendarTest { public static void main(String[] args) { // 获取当前年份.月份.日期 Calendar cale = ...

  4. bootstrap中的data-dismiss属性

    <button type="button" class="btn default" data-dismiss="modal">关 ...

  5. 卡尔曼滤波总结——KF、EFK、UKF

    1.用途 现实是我们的处理和测量模型都是非线性的,结果就是一个不规则分布,KF能够使用的前提就是所处理的状态是满足高斯分布的,为了解决这个问题,EKF是寻找一个线性函数来近似这个非线性函数,而UKF就 ...

  6. Junit问题01 利用 @Autowired 注入失效问题

    1 利用 @Autowired 注入失效问题 1.1 问题描述 在使用Junit作为测试框架的单元测试中,直接了用@Autowired记性依赖注入时总是注入失败 1.2 问题原因 在测试类中没有设定上 ...

  7. opencv3读取视频并保存为图片

    #include <iostream> #include <vector> #include <opencv2/opencv.hpp> using namespac ...

  8. 448. Find All Numbers Disappeared in an Array 寻找有界数组[1,n]中的缺失数

    [抄题]: Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice ...

  9. ubuntu 64 14.04 共享文件夹问题

    转自http://blog.csdn.net/gongyuan073/article/details/46604233 原文链接: http://blog.csdn.NET/chinley/artic ...

  10. Sqlserver中的几把锁和.net中的事务级别

    当数据表被事务锁定后,我们再进行select查询时,需要为with(锁选项)来查询信息,如果不加,select将会被阻塞,直到锁被释放,下面介绍几种SQL的锁选项 SQL的几把锁 NOLOCK(不加锁 ...