E. Pig and Palindromes

Peppa the Pig was walking and walked into the forest. What a strange coincidence! The forest has the shape of a rectangle, consisting of n rows and m columns. We enumerate the rows of the rectangle from top to bottom with numbers from 1 to n, and the columns — from left to right with numbers from 1 to m. Let’s denote the cell at the intersection of the r-th row and the c-th column as (r, c).

Initially the pig stands in cell (1, 1), and in the end she wants to be in cell (n, m). Since the pig is in a hurry to get home, she can go from cell (r, c), only to either cell (r + 1, c) or (r, c + 1). She cannot leave the forest.

The forest, where the pig is, is very unusual. Some cells of the forest similar to each other, and some look very different. Peppa enjoys taking pictures and at every step she takes a picture of the cell where she is now. The path through the forest is considered to be beautiful if photographs taken on her way, can be viewed in both forward and in reverse order, showing the same sequence of photos. More formally, the line formed by the cells in order of visiting should be a palindrome (you can read a formal definition of a palindrome in the previous problem).

Count the number of beautiful paths from cell (1, 1) to cell (n, m). Since this number can be very large, determine the remainder after dividing it by 109 + 7.

Input

The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the height and width of the field.

Each of the following n lines contains m lowercase English letters identifying the types of cells of the forest. Identical cells are represented by identical letters, different cells are represented by different letters.

Output

Print a single integer — the number of beautiful paths modulo 109 + 7.

Sample test(s)

input

3 4

aaab

baaa

abba

output

3

题意概述:在一个n*m的矩阵中,每个格子都有一个字母。你从(1,1)出发前往(n,m),每次仅仅能向下或向右。当到达终点时,把你经过的字母写下来。产生一个字符串。求有多少种走成回文的方案。

每一次仅仅能向下或向右。所以考虑能够用dp做。考虑曼哈顿距离

按距离原点和终点的曼哈顿距离同样的两个点做状态转移

想象有两个点分别从起点和终点同一时候向中间走

用f[p1][p2] 表示 第一个点在p1位置第二个点在p2位置时的从起点终点同一时候走过的同样字母路径的合法状态数

f[p1][p2]=f[p1_f1][p2_f1]+f[p1_f1][p2_f2]+f[p1_f2][p2_f1]+f[p1_f2][p2_f2]

p1_f1,p1_f2,p2_f1,p2_f2分别表示p1和p2的前驱点

因为坐标非常大,须要用滚动数组优化。斜着循环每个点也须要一些小技巧详细看代码~

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAX=505;
const int MOD=1e9+7;
char s[MAX][MAX];
int f[MAX][MAX]={0};
int f_[MAX][MAX];
int i,j,m,n,k,dis;
struct point{
int x,y;
};
point next_1(point a)
{
if (a.y==1&&a.x<n)
a.x++;
else
a.y++;
return a;
}
point next_2(point a)
{
if (a.x==n&&a.y>1)
a.y--;
else
a.x--;
return a;
}
point nex(point a)
{
a.x--;
a.y++;
return a;
}
int main()
{
cin>>n>>m;
int ans=0;
getchar();
for (i=1;i<=n;i++)
{
for (j=1;j<=m;j++)
scanf("%c",&s[i][j]);
getchar();
}
point a,b,p1,p2;
a.x=a.y=1;
b.x=n;b.y=m;
int max_=(m+n)/2;
if (s[1][1]==s[n][m])
f[1][n]=1;
else
f[1][n]=0;
if (m+n<=3)
{
cout<<f[1][n]<<endl;
return 0;
}
for (dis=2;dis<=max_;dis++)
{
a=next_1(a);
b=next_2(b);
for (i=1;i<=500;i++)
for (j=1;j<=500;j++)
{
f_[i][j]=f[i][j];
f[i][j]=0;
}
for (p1=a;p1.y<=m&&p1.x>=1;p1=nex(p1))
for (p2=b;p2.y<=m&&p2.x>=1;p2=nex(p2))
if (s[p1.x][p1.y]==s[p2.x][p2.y])
{
f[p1.x][p2.x]=((f_[p1.x-1][p2.x]+f_[p1.x-1][p2.x+1])%MOD+(f_[p1.x][p2.x]+f_[p1.x][p2.x+1])%MOD)%MOD;
if (((p1.x==p2.x)&&(abs(p1.y-p2.y)<=1))||((p1.y==p2.y)&&(abs(p1.x-p2.x)<=1)))
ans=(ans+f[p1.x][p2.x])%MOD;
}
}
cout<<ans<<endl;
return 0;
}

贴一个cf上看到的位运算的程序,相当简短

#include <bits/stdc++.h>
using namespace std;
#define f(i,n) for(int i=0;i<(n);i++)
#define fr(i,n) for(int i=n;i--;)
char x[500][501];
int d[2][501][501],n,m;
main(){
cin>>n>>m;
f(i,n) cin>>x[i];
f(ei,n) fr(si,n) fr(sj,m){
auto& c=d[ei&1][si][sj]=0,ej=n+m-2-si-sj-ei;
if(si<=ei&&sj<=ej&&x[si][sj]==x[ei][ej]&&!(c=abs(si-ei)+abs(sj-ej)<=1))
f(i,2) f(j,2) c=(c+d[ei-!j&1][si+!i][sj+!!i])%((int)1e9+7);
}
cout<<d[~n&1][0][0]<<'\n';
}

CF 316div2 E.Pig and Palindromes的更多相关文章

  1. codeforces 570 E. Pig and Palindromes (DP)

    题目链接: 570 E. Pig and Palindromes 题目描述: 有一个n*m的矩阵,每个小格子里面都有一个字母.Peppa the Pig想要从(1,1)到(n, m).因为Peppa ...

  2. Codeforces Round #316 (Div. 2)E. Pig and Palindromes DP

    E. Pig and Palindromes   Peppa the Pig was walking and walked into the forest. What a strange coinci ...

  3. 【25.64%】【codeforces 570E】Pig and Palindromes

    time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. Codeforces 570E - Pig and Palindromes - [滚动优化DP]

    题目链接:https://codeforces.com/problemset/problem/570/E 题意: 给出 $n \times m$ 的网格,每一格上有一个小写字母,现在从 $(1,1)$ ...

  5. D Tree Requests dfs+二分 D Pig and Palindromes -dp

    D time limit per test 2 seconds memory limit per test 256 megabytes input standard input output stan ...

  6. CF570E Pig and Palindromes

    完全不会这种类型的$dp$啊…… 考虑回文串一定是可以拆分成(偶数个字母 + 偶数个字母)或者(偶数个字母 + 一个字母 +偶数个字母),两边的偶数个字母其实是完全对称的.因为这道题回文串的长度是给定 ...

  7. CodeForces 570E DP Pig and Palindromes

    题意:给出一个n行m列的字符矩阵,从左上角走到右下角,每次只能往右或者往下走,求一共有多少种走法能得到回文串. 分析: 可以从两头开始考虑,每次只走一样字符的格子,这样得到的两个字符串拼起来之后就是一 ...

  8. Codeforces 570 - A/B/C/D/E - (Done)

    链接:https://codeforces.com/contest/570 A - Elections - [水] AC代码: #include<bits/stdc++.h> using ...

  9. CF 568A(Primes or Palindromes?-暴力推断)

    A. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

随机推荐

  1. 【我要学python】愣头青之初安装就打了一记耳光

    pycharm安装好后创建项目出现interpreter field is empty,导致pycharm无法使用. 这是因为python没有安装好,重新自定义安装一次即可 下载地址:https:// ...

  2. 51nod 最长单增子序列(动态规划)

    最长单增子序列 (LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的 ...

  3. [CF915F]Imbalance Value of a Tree

    [CF915F]Imbalance Value of a Tree 题目大意: 一棵\(n(n\le10^6)\)个结点的树,每个结点有一个权值\(w_i\).定义\(I(i,j)\)为\(i\)到\ ...

  4. 7.3(java学习笔记)网络编程之UDP

    一.UDP UDP的全称是User Datagram Protocol(用户数据报协议),是一种无连接的不安全的传输协议, 传输数据时发送方和接收方无需建立连接,所以是不安全的. 发送时不建立连接直接 ...

  5. faststone 注册码

    用户名:c1ikm密码:AXMQX-RMMMJ-DBHHF-WIHTV 或 AXOQS-RRMGS-ODAQO-APHUU

  6. webpack 打包压缩 ES6文件报错UglifyJs + Unexpected token punc «(», expected punc

  7. Coherence装载数据的研究-PreloadRequest

    最近给客户准备培训,看到Coherence可以通过三种方式批量加载数据,分别是: Custom application InvocableMap - PreloadRequest Invocation ...

  8. 《linux 内核全然剖析》 chapter 4 80x86 保护模式极其编程

    80x86 保护模式极其编程       首先我不得不说.看这章真的非常纠结...看了半天.不知道这个东西能干嘛.我感觉唯一有点用的就是对于内存映射的理解...我假设不在底层给80x86写汇编的话.我 ...

  9. cs-SelectTree-DropTreeNode, SelectTreeList

    ylbtech-Unitity: cs-SelectTree-DropTreeNode, SelectTreeList DropTreeNode.cs SelectTreeList.cs 1.A,效果 ...

  10. centos7 iptables和firewalld学习记录

    centos7系统使用firewalld服务替代了iptables服务,但是依然可以使用iptables来管理内核的netfilter 但其实iptables服务和firewalld服务都不是真正的防 ...