最小生成树算法 1.Prim算法
最小生成树(MST):一个有N个点的图,边一定是大于等于N-1条边的。在这些边中选择N-1条出来,连接所有N个点。这N-1条边的边权之和是所有方案中最小的。
Prim算法的时间复杂度时O(n^2)的,因此适用于稠密图的最小生成树,如果是稀疏图的情况下采用Kruskal算法更好。
Prim算法蕴含了贪心的思想,其原理是把图中所有的点分成两个集合,一个集合(V)是已经在生成树中的点,另一个集合(G)是不在生成树中的点,然后寻找起点在V中,终点在G中的边中权值最小的边加入生成树,然后把终点从G移到V中,最后直到G中没有元素即可。这样做既保证了最小生成树的要求也不会产生回路。
code:
#include<stdio.h>
#include<stdlib.h>
#define max 10000000
int g[][]={{max,,max,max,max,,max},
{,max,,,max,,max},
{max,,max,,,max,max},
{max,,,max,,,max},
{max,max,,,max,,},
{,,max,,,max,max},
{max,max,max,max,,max,max}}; int i,dist[],flag[]={},j,s=;
void prim(int vi){ for(i=;i<;i++)
dist[i]=g[vi][i];
flag[vi]=;
for(i=;i<;i++){
int min=max;
int k; for(j=;j<;j++){
if(dist[j]<min && !flag[j]){
k=j;
min=dist[j];
}
}
flag[k]=;
for(j=;j<;j++){
if(dist[j]>g[k][j])
dist[j]=g[k][j];
}
}
}
int main(){
int i,j;
prim();
for(i=;i<;i++) {
s+=dist[i];
printf("%d\n",dist[i]);}
printf("%d",s);
return ;
}
最小生成树算法 1.Prim算法的更多相关文章
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...
- hdu 1162 Eddy's picture (Kruskal算法,prim算法,最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成 ...
- 【算法】prim算法(最小生成树)(与Dijkstra算法的比较)
最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有 ...
- Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法
1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...
- 算法之prim算法
最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小. prim算法就是一种最小生成树算法. 普里 ...
- 最小生成树问题:Kruskal算法 AND Prim算法
Kruskal算法: void Kruskal ( ) { MST = { } ; //边的集合,最初为空集 while( Edge ...
- 图-kruskal算法,prim算法
要求无向图 最小生成树: 连通性,累加和最小 并查集 结构 K算法 从最小的边开始,加上有没有形成环,没有就加,加上有环就不要 难点:如何判断加上一条边,有没有形成环. P算法 从点的角度开始
- 无向图最小生成树(prim算法)
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.该算法于1930年由捷 ...
随机推荐
- installed_oracle_can't_use
Preface 1.my server is windowsxp 2.database is the oralce 10g step A.CHECK SERVER 1.win + r cmd sqlp ...
- 怎么看电脑有没有安装USB3.0驱动
1.首先要看主板是否带USB3.0接口. 2.然后计算机-属性-设备管理器-通用串行总线,就可以看到是否有安装USB3.0驱动
- 数据结构与算法分析java——树2(二叉树类型)
1. 二叉查找树 二叉查找树(Binary Search Tree)/ 有序二叉树(ordered binary tree)/ 排序二叉树(sorted binary tree) 1). 若任意节点 ...
- 线段树扫描线总结(POJ 1389)
扫描线算是线段树的一个比较特殊的用法,虽然NOIP不一定会考,但是学学还是有用的,况且也不是很难理解. 以前学过一点,不是很透,今天算是搞懂了. 就以这道题为例吧:嘟嘟嘟 题目的意思是在一个二维坐标系 ...
- caffe的卷积层的乘积运算的优化
https://hal.inria.fr/file/index/docid/112631/filename/p1038112283956.pdf caffe的卷积计算的优化来自这篇paper,实际上就 ...
- c++字符串初始化
#include<string> string s1 = "abcdefg"; string s2("abcdefg");
- 四、IntelliJ IDEA 之 HelloWorld 项目创建及相关配置文件介绍
咱们通过创建一个 Static Web 项目大致了解了 IntelliJ IDEA 的使用界面,接下来,趁着这个热乎劲,咱们来创建第一个 Java 项目“HelloWorld”,进入如下界面: 如上图 ...
- P1171 售货员的难题 暴力dp
题面 著名的TSP问题,NPC问题 对于数据大的情况,我们可以使用一系列近似算法进行寻找解. 对于数据规模小的情况,我们可以直接暴力dp 一开始写了一个dfs,然后就被n=20的数据卡爆了 #incl ...
- ipython notebook开通远程
之前只是会用,别人告诉我命令和大概怎么设置的,今天自己搭建才发现一知半解搞不定啊. 目的:远程通过ipython notebook调用服务器. 服务器是ubuntu16.04 本地机器win7 配置方 ...
- linux 使用sqlite3
:c中使用sqlite3需要调用函数接口操作: sqlite3 *db; int status=sqlite_open("dbname",&db);//打开或者创建数据库 ...