最小生成树(MST):一个有N个点的图,边一定是大于等于N-1条边的。在这些边中选择N-1条出来,连接所有N个点。这N-1条边的边权之和是所有方案中最小的。

Prim算法的时间复杂度时O(n^2)的,因此适用于稠密图的最小生成树,如果是稀疏图的情况下采用Kruskal算法更好。

Prim算法蕴含了贪心的思想,其原理是把图中所有的点分成两个集合,一个集合(V)是已经在生成树中的点,另一个集合(G)是不在生成树中的点,然后寻找起点在V中,终点在G中的边中权值最小的边加入生成树,然后把终点从G移到V中,最后直到G中没有元素即可。这样做既保证了最小生成树的要求也不会产生回路。

code:

#include<stdio.h>
#include<stdlib.h>
#define max 10000000
int g[][]={{max,,max,max,max,,max},
{,max,,,max,,max},
{max,,max,,,max,max},
{max,,,max,,,max},
{max,max,,,max,,},
{,,max,,,max,max},
{max,max,max,max,,max,max}}; int i,dist[],flag[]={},j,s=;
void prim(int vi){ for(i=;i<;i++)
dist[i]=g[vi][i];
flag[vi]=;
for(i=;i<;i++){
int min=max;
int k; for(j=;j<;j++){
if(dist[j]<min && !flag[j]){
k=j;
min=dist[j];
}
}
flag[k]=;
for(j=;j<;j++){
if(dist[j]>g[k][j])
dist[j]=g[k][j];
}
}
}
int main(){
int i,j;
prim();
for(i=;i<;i++) {
s+=dist[i];
printf("%d\n",dist[i]);}
printf("%d",s);
return ;
}

最小生成树算法 1.Prim算法的更多相关文章

  1. 最小生成树——Kruskal与Prim算法

    最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...

  2. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  3. hdu 1162 Eddy&#39;s picture (Kruskal算法,prim算法,最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成 ...

  4. 【算法】prim算法(最小生成树)(与Dijkstra算法的比较)

    最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有 ...

  5. Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法

    1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...

  6. 算法之prim算法

    最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小. prim算法就是一种最小生成树算法. 普里 ...

  7. 最小生成树问题:Kruskal算法 AND Prim算法

    Kruskal算法: void Kruskal ( ) {     MST = { } ;                           //边的集合,最初为空集     while( Edge ...

  8. 图-kruskal算法,prim算法

    要求无向图 最小生成树: 连通性,累加和最小 并查集 结构 K算法 从最小的边开始,加上有没有形成环,没有就加,加上有环就不要 难点:如何判断加上一条边,有没有形成环. P算法 从点的角度开始

  9. 无向图最小生成树(prim算法)

    普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.该算法于1930年由捷 ...

随机推荐

  1. June 15th 2017 Week 24th Thursday

    Whatever is worth doing is worth doing well. 任何值得做的,就把它做好. Whatever is worth doing is worth doing we ...

  2. 小组Scrum第一次冲刺

    团队任务描述: 在确定完分组,并对于敏捷开发做了相应的了解之后,我们团队开始了第一次的冲刺.对于我们团队的第一次的 Scrum冲刺,我们团队开展了团队会议.首先,我们明确了我们的目标,对其进行了相对初 ...

  3. ACM-ICPC 2017 Asia HongKong 解题报告

    ACM-ICPC 2017 Asia HongKong 解题报告 任意门:https://nanti.jisuanke.com/?kw=ACM-ICPC%202017%20Asia%20HongKon ...

  4. Visual Studio C++ Win32控制台应用程序,Win32项目,MFC的区别

    背景 Visual Studio C++ 创建新项目蹦出来如下选项: Win32控制台应用程序,Win32项目,MFC有什么区别? 正文: Win32控制台,没有界面,命令行执行生成的文件则直接在后台 ...

  5. 【luogu P3385 负环】 模板

    题目链接:https://www.luogu.org/problemnew/show/P3385 SPFA判负环. 这个题必须卡一卡才过得去. 按理说对于一个负环点应当是入队 > n次. 但是这 ...

  6. 初入AngularJS基础门

    作为mvvm 框架过重 不适用于性能比较高的移动端的web栈, ui组建性对复杂,不利于重用 AngularJS 构建一个CRUD ( create retrieve update delete )的 ...

  7. .length()与.length与.size()

    .length  .length()属于数组的一个属性和string的一个方法,可以获得该数组或者字符串的长度,返回一个整型数据 .size()属于List泛型对象的一个方法,返回一个list对象中存 ...

  8. 6.Spring Cloud初相识-------Zool路由

    前言: 在生产环境中,我们不可能将每个服务的真实信息暴漏出去,因为这样太不安全. 我们会选择使用路由代理真实的服务信息,由它负责转发给真实的服务. 新建一个Zool: 1.添加依赖 <?xml ...

  9. Struts2 第二讲 -- Struts2的入门

    搭建struts2环境时,我们一般需要做以下几个步骤的工作: 第一步:创建javaweb工程(这个很废话有木有) 第二步:找到开发Struts2应用需要使用到的jar文件.(这个很白痴有没有) 到ht ...

  10. 对象API

    遍历对象里的每个元素 var obj ={ a:32, b:12, c :342 } for (const key of obj){ if(obj.hasOwnProperty(key)){ cons ...