Time Limit: 1000MS   Memory Limit: 10000K

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of
schools that must receive a copy of the new software in order for the
software to reach all schools in the network according to the agreement
(Subtask A). As a further task, we want to ensure that by sending the
copy of new software to an arbitrary school, this software will reach
all schools in the network. To achieve this goal we may have to extend
the lists of receivers by new members. Compute the minimal number of
extensions that have to be made so that whatever school we send the new
software to, it will reach all other schools (Subtask B). One extension
means introducing one new member into the list of receivers of one
school.

Input

The
first line contains an integer N: the number of schools in the network
(2 <= N <= 100). The schools are identified by the first N
positive integers. Each of the next N lines describes a list of
receivers. The line i+1 contains the identifiers of the receivers of
school i. Each list ends with a 0. An empty list contains a 0 alone in
the line.

Output

Your
program should write two lines to the standard output. The first line
should contain one positive integer: the solution of subtask A. The
second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

题意

有向图上有 N 个点,若干有向边。
第一问:至少给几个点传递信息,才能保证信息传遍整个图。
第二问:至少添加几条边,才能使任意选择点,都能传遍整个图。

思路

强连通分量的裸题。
强连通分量内的任意一点收到消息,内部其他各点必定都能收到消息。因此,可以把每个强连通分量缩成一个点。只需要考察入度为 0 的强连通分量的个数,就是第一问的答案。
对于第二问,是把图连接成一个强连通分量,同样可以在缩点后的图中操作。这里的做法是统计图中入度为0、出度为0的强连通分量的个数,取较大值即为第二问的答案。 本题中原图只有一个强连通分量的情况需要特判。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<vector> using namespace std; const int maxn = + ; int N;
int In[maxn], Out[maxn]; /***************************Tarjan算法模板***************************/
vector<int> G[maxn];
int Mark[maxn], Root[maxn], Stack[maxn];//时间戳,根(当前分量中时间戳最小的节点),栈
bool Instack[maxn]; //是否在栈中标记
int Ssc[maxn]; //每个节点所在的强连通分量的编号
int Index, Ssc_n, Top; //搜索时用的时间戳,强连通分量总数,栈顶指针 void Tarjan(int u) //u 当前搜索到的点
{
Mark[u] = Root[u] = ++ Index; //每找到一个点,对时间戳和根初始化
Stack[Top ++] = u; //压栈
Instack[u] = true; //在栈中标记 int v; for(int i= ; i< G[u].size(); i++) //向下搜索
{
v = G[u][i];
if(Mark[v] == ) //没到过的点
{
Tarjan(v); //先向下搜索
if(Root[u] > Root[v]) Root[u] = Root[v];//更新根
}
else if(Instack[v] && Root[u] > Mark[v]) Root[u] = Mark[v]; //到过的点且点仍在栈中,试着看这个点能不能成为根
}
/*对当前点的搜索结束*/
if(Mark[u] == Root[u]) //当前点本身时根
{
Ssc_n ++; //更新强连通分量数 do{ //栈中比它后入栈的元素在以它为根的强连通分量中
v = Stack[-- Top];
Instack[v] = false;
Ssc[v] = Ssc_n;//把同一个强连通分支的点做上相同标记
}while(v != u); //直到它自己
}
} void SSC()
{
memset(Mark, , sizeof Mark); //初始化时间戳和栈内标记
memset(Instack, false, sizeof Instack);
Index = Ssc_n = Top = ; //初始化时间戳,强连通分量数,栈顶指针 for(int i= ; i<= N; i++) //保证图上所有点都访问到
if(Mark[i] == ) Tarjan(i);
}
/***************************Tarjan算法模板***************************/ int main()
{
//freopen("in.txt", "r", stdin); scanf("%d", &N);
for(int i= ; i<= N; i++)
{
int x;
while(scanf("%d", &x), x)
G[i].push_back(x);
} SSC(); if(Ssc_n == ) //只有一个强连通分量的情况
{
cout << "1\n0\n";
return ;
} memset(In, , sizeof In); //求每个强连通分量的入度和出度
memset(Out, , sizeof Out);
for(int u= ; u<= N; u++)
{
for(int i= ; i< G[u].size(); i++)
{
int v = G[u][i];
if(Ssc[u] != Ssc[v])//u,v两点不在同一个强连通分支
Out[Ssc[u]] ++, In[Ssc[v]] ++;
}
} int S1 = , S2 = ;//找入度为0、出度为0的点的数目
for(int i= ; i<= Ssc_n; i++)
{
if(In[i] == ) S1 ++;
if(Out[i] == ) S2 ++;
} cout << S1 << endl << max(S1, S2) << endl; return ;
}

POJ1236_A - Network of Schools _强连通分量::Tarjan算法的更多相关文章

  1. POJ 1236 Network of Schools(强连通分量/Tarjan缩点)

    传送门 Description A number of schools are connected to a computer network. Agreements have been develo ...

  2. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  3. poj1236 Network of Schools【强连通分量(tarjan)缩点】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4316263.html  ---by 墨染之樱花 [题目链接]http://poj.org/pr ...

  4. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  5. poj 1236 Network of Schools (强连通分量+缩点)

    题目大概: 每个学校都可以把软件复制好,交给它名单上的学校. 问题A:把软件复制成几份,然后交给不同的学校,所有学校才能够都有软件. 问题B:添加几条边,能使得这个图变成强连通图. 思路: 找出所有的 ...

  6. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  7. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  8. [有向图的强连通分量][Tarjan算法]

    https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...

  9. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

随机推荐

  1. 实验:将系统进程映射移到 Python 字典中

    参考官方文档,测试下列代码,把oracle的进程映射到python的字典中: [oracle@ycr python]$ more pro_get.py import reimport subproce ...

  2. TP5.0:访问不同模块方法,跳转视图页面

    我们在开发项目时,都会给每个项目加上基本的后台管理页面,并命名为admin 那么,我们在添加admin后台模块后,怎么通过url访问admin后台模块文件代码呢? 1.访问admin模块默认文件的UR ...

  3. numpy cheat sheet

    numpy cheat sheet https://files.cnblogs.com/files/lion-zheng/Numpy_Python_Cheat_Sheet.pdf

  4. git相关操作(githug)

    Level 15  restructure 关卡描述 你添加了一些文件到你的仓库,但现在知道你的项目需要进行调整.创建一个新的文件夹命名为“src”,使用git将所有的".html" ...

  5. A full JDK must be specified

    当你开发就了,你就发现,你遇到了各种奇葩的问题,结果,自己奇葩了. 背景:由于项目需要做安全恢复测试,然后,就搭一个新的库环境去测试: 配置jboss的运行jdk时,结果,蹦出个:A full JDK ...

  6. 如何将BSP应用配置成Fiori Launchpad上的一个tile

    当我们通过WebIDE或者Eclipse的插件Team Provider把一个本地开发好的UI5应用部署到了ABAP Netweaver服务器上之后,我们可以将该UI5应用配置成Fiori launc ...

  7. SpringCloud实战4-Hystrix线程隔离&请求缓存&请求合并

    接着上一篇的Hystrix进行进一步了解. 当系统用户不断增长时,每个微服务需要承受的并发压力也越来越大,在分布式环境中,通常压力来自对依赖服务的调用,因为亲戚依赖服务的资源需要通过通信来实现,这样的 ...

  8. redux创建store,处理更新数据

    如果我们想使用redux,第一步需要通过 yarn add redux 来安装redux 安装成功后就需要去创建一个store,怎么创建呢,非常的简单,在src下面创建一个文件夹,这个文件夹名字就叫做 ...

  9. pocsuite 实现一个verify检测功能

    今天在测试中发现一个命令执行漏洞,尝试用创宇的pocsuite框架实现.说实话,这玩意儿确实没有自己写POC顺手,非得就着他的标准来,就很难受,以至于耽误了很多时间在规范上.. 影响参数后直接用||连 ...

  10. [luoguP1090][Noip2004]合并果子

                                            合并果子 首先来看一下题目: (OI2004合并果子) [题目描述] 果园里,多多已经将所有的果子打了下来,而且按果子的 ...