任意门:http://poj.org/problem?id=3233

Matrix Power Series
Time Limit: 3000MS   Memory Limit: 131072K
Total Submissions: 28619   Accepted: 11646

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

Source

POJ Monthly--2007.06.03, Huang, Jinsong

题意概括:

给一个 N 维方阵 A ,求 A+A^2+A^3+ ... +A^k ,结果模 m;

解题思路:

矩阵快速幂解决矩阵幂运算(本质是二分优化);

求前缀和二分:

比如,当k=6时,有:
    A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)
    应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#define LL long long
using namespace std;
const int MAXN = ;
int N, Mod; struct mat
{
int m[MAXN][MAXN];
}base; mat mult(mat a, mat b)
{
mat res;
memset(res.m, , sizeof(res));
for(int i = ; i < N; i++)
for(int j = ; j < N; j++){
if(a.m[i][j])
for(int k = ; k < N; k++)
res.m[i][k] = (res.m[i][k] + a.m[i][j] * b.m[j][k])%Mod;
}
return res;
} mat add(mat a, mat b)
{
mat res;
for(int i = ; i < N; i++)
for(int j = ; j < N; j++)
res.m[i][j] = (a.m[i][j] + b.m[i][j])%Mod;
return res;
} mat qpow(mat a, int k)
{
mat ans;
memset(ans.m, , sizeof(ans.m));
for(int i = ; i < N; i++) ans.m[i][i] = ; while(k){
if(k&) ans = mult(ans, a);
k>>=;
a=mult(a, a);
}
return ans;
} mat solve(int K)
{
if(K == ) return base;
mat res;
memset(res.m, , sizeof(res.m));
for(int i = ; i < N; i++) res.m[i][i] = ; res = add(res, qpow(base, K>>));
res = mult(res, solve(K>>));
if(K&) res = add(res, qpow(base, K)); return res;
} int main()
{
int K;
mat ans;
scanf("%d %d %d", &N, &K, &Mod);
for(int i = ; i < N; i++)
for(int j = ; j < N; j++){
scanf("%d", &base.m[i][j]);
}
ans = solve(K);
for(int i = ; i < N; i++){
for(int j = ; j < N-; j++)
printf("%d ", ans.m[i][j]);
printf("%d\n", ans.m[i][N-]);
}
return ;
}

POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】的更多相关文章

  1. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

  2. 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)

    题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...

  3. POJ 3233 Matrix Power Series(矩阵快速幂)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...

  4. POJ 3233 Matrix Power Series (矩阵快速幂)

    题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...

  5. POJ - 3233 Matrix Power Series (矩阵等比二分求和)

    Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. ...

  6. Poj 3233 Matrix Power Series(矩阵二分快速幂)

    题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...

  7. POJ 3233 Matrix Power Series (矩阵乘法)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted:  ...

  8. POJ 3233 Matrix Power Series (矩阵+二分+二分)

    题目地址:http://poj.org/problem?id=3233 题意:给你一个矩阵A,让你求A+A^2+……+A^k模p的矩阵值 题解:我们知道求A^n我们可以用二分-矩阵快速幂来求,而 当k ...

  9. POJ 3233 Matrix Power Series (矩阵分块,递推)

    矩阵乘法是可以分块的,而且幂的和也是具有线性的. 不难得到 Si = Si-1+A*Ai-1,Ai = A*Ai-1.然后矩阵快速幂就可以了. /*************************** ...

  10. poj3233 Matrix Power Series(矩阵快速幂)

    题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂. 那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵    将 S 取幂,会发现一个特性: Sk +1右上角 ...

随机推荐

  1. NFS 优化及详解

    一, 启动过程: 所以启动的时候一定一定要先启用——————rpcbind———————————————— 启动 rpcbind  ------>/etc/init.d/rpcbind rest ...

  2. PHP 编译安装 gd 库

    作者博文地址:https://www.cnblogs.com/liu-shuai/ 安装gd依赖库 freetype wget http://download.savannah.gnu.org/rel ...

  3. JavaScript设计模式(二) - 单例模式

    什么是单例模式? 单例模式从字面上的理解是不困难的,js上就是指只有一个对象实例. 为什么需要单例模式? 我们可以将一些成员变量封装在一个单例对象中,每次访问这些变量都只能从这个单例对象进行访问,这样 ...

  4. Go语言下载网络图片或文件

    最近闲来无事, 于是就简单学习了下Go语言的基本的用法.由于实践才是最快的学习方法,所以这里就以下载网络图片或文件入手来学习Go语言 文件下载到本地,通常的思路就是先获得网络文件的 输入流 以及本地文 ...

  5. 【密码学】RSA算法原理

    RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密. RSA的算法涉及三个参数,n.e1.e2. 其中,n是两个大质数p.q的积,n的二进制 ...

  6. hdu 5242——Game——————【树链剖分思想】

    Game Time Limit:1500MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  7. nginx 导致文件上传中途中断 Failed to load resource: net::ERR_CONNECTION_RESET

    昨天上传文件出了问题,常常在进度条到一半的时候就终止了.在本地测试的时候倒是没问题,今天早上用花生壳换了另一个域名,在我本地和服务器都测试,却能够上传文件成功.然后就想到了可能是nginx的问题,也在 ...

  8. 介绍几种搭建Dojo环境的方法

    Hello World! 的时间到了,在你所学过的众多语言中,哪个不是从此学起的呢?但在此之前,我们要先构建一个开发环境,如同刚开始学习Java的时候,还是需要我们先安装JDK.配置好环境变量等等,H ...

  9. [转]Using NLog for ASP.NET Core to write custom information to the database

    本文转自:https://github.com/NLog/NLog/issues/1366 In the previous versions of NLog it was easily possibl ...

  10. 项目视图 Project Browser

    项目视图 在这个视图,你可以访问.管理你当前项目资源. 项目视图左侧面板显示项目的文件夹结构的分层列表,当从列表中单击一个文件夹,其内容会显示在面板的右边.你可以点击小三角展开或折叠文件夹,显示他包含 ...